distribute_transpiler.py 66.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
typhoonzero 已提交
33
import math
S
seiriosPlus 已提交
34
import random
35
import numpy as np
36
import collections
37

38
from .ps_dispatcher import RoundRobin, HashName, PSDispatcher
Y
Yancey 已提交
39
from .. import core, framework
T
typhoonzero 已提交
40
from ..framework import Program, default_main_program, \
Q
Qiyang Min 已提交
41
                        default_startup_program, Block, \
W
Wu Yi 已提交
42
                        Parameter, grad_var_name
43 44
from .details import *
from functools import reduce
45 46 47

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
48
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
49 50 51
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
T
done  
typhoonzero 已提交
52 53


T
typhoonzero 已提交
54 55 56 57 58 59
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
60

T
typhoonzero 已提交
61 62
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
63 64


65 66 67 68
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
69
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
70
    """
71 72 73 74 75 76
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
77
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
78 79 80

    Args:
        var_list (list): List of variables.
81 82
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
83 84
        min_block_size (int): Minimum splitted block size.
    Returns:
85
        blocks (list[(varname, block_id, current_block_size)]): A list
86
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
87 88 89
    """
    blocks = []
    for var in var_list:
90
        split_count = slice_count
T
typhoonzero 已提交
91 92 93 94
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
95
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
96 97 98 99 100 101 102 103 104
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
105
        # update split_count after aligning
T
typhoonzero 已提交
106
        split_count = int(math.ceil(var_numel / float(block_size)))
107
        for block_id in range(split_count):
T
typhoonzero 已提交
108 109 110 111 112 113 114
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
115 116 117 118 119 120 121
class DistributeTranspilerConfig(object):
    """
    slice_var_up (bool): Do Tensor slice for pservers, default is True.
    split_method (PSDispatcher): RoundRobin or HashName can be used
        try to choose the best method to balance loads for pservers.
    min_block_size (int): Minimum splitted element number in block.
        According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
122
        We can use bandwidth effiently when data size is larger than 2MB.If you
G
gongweibao 已提交
123 124 125 126 127 128 129 130
        want to change it, please be sure you see the slice_variable function.
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192


Y
gen rst  
yi.wu 已提交
131
class DistributeTranspiler(object):
Y
yi.wu 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.

    The main_program will be transformed to use a remote parameter server
    to do parameter optimization. And the optimization graph will be put
    into a parameter server program.

    Examples:
        .. code-block:: python

           # Define your model before these codes.
           port = os.getenv("PADDLE_PSERVER_PORT", "6174")
           pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
           eplist = []
           for ip in pserver_ips.split(","):
                eplist.append(':'.join([ip, port]))
           pserver_endpoints = ",".join(eplist)
           trainers = int(os.getenv("PADDLE_TRAINERS"))
           current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
           trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
           role = os.getenv("PADDLE_TRAINING_ROLE")

           t = distribute_transpiler.DistributeTranspiler()
           t.transpile(
                trainer_id, pservers=pserver_endpoints, trainers=trainers)
           if role == "PSERVER":
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
           elif role == "TRAINER":
                trainer_program = t.get_trainer_program()
    """
Y
Yancey1989 已提交
166

G
gongweibao 已提交
167 168 169 170 171 172 173 174 175 176 177 178
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

179 180 181 182 183 184 185
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
                  sync_mode=True):
        """
Y
yi.wu 已提交
186 187 188 189 190 191 192 193 194 195 196
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
            pservers (str): comma separated ip:port string for the pserver
                list.
            trainers (int): number of trainers in the distributed job.
            sync_mode (bool): Do sync training or not, default is True.
197 198 199 200
        """
        if program is None:
            program = default_main_program()
        self.origin_program = program
G
gongweibao 已提交
201 202 203
        self.origin_startup_program = default_startup_program().clone()

        self.startup_program = default_startup_program()
204 205 206 207 208 209 210
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
211
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
212
        self.has_distributed_lookup_table = self._has_distributed_lookup_table()
213
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
214
        self.grad_name_to_param_name = dict()
215 216
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
217
            self.grad_name_to_param_name[grad_var.name] = param_var.name
218

G
gongweibao 已提交
219
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
220
        self._init_splited_vars()
221

G
gongweibao 已提交
222
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
223
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
224
        send_vars = []
225 226 227 228 229 230

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
231
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
232

G
gongweibao 已提交
233
        if not self.config.slice_var_up:
234
            random.seed(self.origin_program.random_seed)
S
seiriosPlus 已提交
235
            random.shuffle(grad_var_mapping_items)
236

237 238
        grad_name_to_send_dummy_out = dict()
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
239
            eplist = ps_dispatcher.dispatch(splited_vars)
240

G
gongweibao 已提交
241
            if not self.config.slice_var_up:
242 243
                assert (len(splited_vars) == 1)

244
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
245
            if len(splited_vars) == 1:
246
                splited_grad_varname = splited_vars[0].name
Y
Yancey1989 已提交
247
                index = find_op_by_output_arg(program.global_block(),
248
                                              splited_grad_varname)
Y
Yancey1989 已提交
249
            elif len(splited_vars) > 1:
250
                orig_var = program.global_block().vars[splited_grad_varname]
Y
Yancey1989 已提交
251
                index = find_op_by_output_arg(program.global_block(),
252
                                              splited_grad_varname)
Y
Yancey1989 已提交
253
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
254
                index += 1
Y
Yancey1989 已提交
255 256
            else:
                AssertionError("Can not insert the send op by original "
257
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
258

W
Wu Yi 已提交
259 260
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
261
            grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
262

W
Wu Yi 已提交
263
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
264
                index=index + 1,
265
                type="send",
Y
update  
Yancey1989 已提交
266
                inputs={"X": splited_vars},
267
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
268 269
                attrs={
                    "epmap": eplist,
270
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
271 272
                    OP_ROLE_VAR_ATTR_NAME:
                    [self.grad_name_to_param_name[grad_varname], grad_varname],
273
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
274
                })
Y
update  
Yancey1989 已提交
275 276
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
277 278

        if self.sync_mode:
W
Wu Yi 已提交
279 280 281
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
            input_deps = grad_name_to_send_dummy_out.values()
Y
Yancey1989 已提交
282 283
            program.global_block().append_op(
                type="send_barrier",
W
Wu Yi 已提交
284 285
                inputs={"X": input_deps},
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
286 287
                attrs={
                    "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
288
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
289
                })
Y
Yancey1989 已提交
290

G
gongweibao 已提交
291
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
292
        recv_vars = []
Y
update  
Yancey1989 已提交
293
        for _, var in enumerate(send_vars):
294
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
295
        ps_dispatcher.reset()
Y
Yancey1989 已提交
296 297
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
298
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
299 300
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
301

Y
Yancey1989 已提交
302
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
303
        all_recv_outputs = []
304
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
305 306 307 308
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
W
Wu Yi 已提交
309 310 311 312 313 314 315
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
                recv_dep_in = grad_name_to_send_dummy_out[
                    self.param_name_to_grad_name[param_varname]]
            all_recv_outputs.extend(splited_var)
Y
Yancey1989 已提交
316 317
            program.global_block().append_op(
                type="recv",
W
Wu Yi 已提交
318
                inputs={"X": [recv_dep_in]},
Y
Yancey1989 已提交
319 320 321
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
322
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
323 324 325 326
                    OP_ROLE_VAR_ATTR_NAME: [
                        param_varname,
                        self.param_name_to_grad_name[param_varname]
                    ],
327
                    "sync_mode": not self.sync_mode
Y
Yancey1989 已提交
328
                })
T
typhoonzero 已提交
329

Q
qiaolongfei 已提交
330
        if self.sync_mode:
W
Wu Yi 已提交
331
            # form a WAW dependency
Q
qiaolongfei 已提交
332 333 334
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
335
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
336 337 338 339
                attrs={
                    "endpoints": pserver_endpoints,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
340

341
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
342 343
            if len(splited_var) <= 1:
                continue
344
            orig_param = program.global_block().vars[param_varname]
T
typhoonzero 已提交
345
            program.global_block().append_op(
T
typhoonzero 已提交
346
                type="concat",
T
typhoonzero 已提交
347
                inputs={"X": splited_var},
T
typhoonzero 已提交
348
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
349
                attrs={"axis": 0})
T
typhoonzero 已提交
350

G
gongweibao 已提交
351 352
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

353
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
354 355
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
356
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
357

T
typhoonzero 已提交
358
    def get_trainer_program(self):
Y
yi.wu 已提交
359 360 361 362 363 364
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
365
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
366
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
367
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
368
        self.origin_program.__str__()
G
gongweibao 已提交
369

370
        return self.origin_program
T
typhoonzero 已提交
371

G
gongweibao 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
    def _get_trainer_startup_program(self,
                                     recv_vars,
                                     eplist,
                                     startup_program=None):
        """
        Get transpiled trainer side startup program.

        Args:
            startup_program(Program): Startup program.

        Returns:
            Program: trainer side startup program.
        """
        if startup_program is None:
            startup_program = self.startup_program

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

        for varname, splited_var in self.param_var_mapping.iteritems():
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
412
                inputs={"X": []},
G
gongweibao 已提交
413 414 415 416 417 418
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
419 420
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
421 422 423
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
424
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
            attrs={
                "endpoints": self.pserver_endpoints,
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        for varname, splited_var in self.param_var_mapping.iteritems():
            #add concat ops to merge splited parameters received from parameter servers.
            if len(splited_var) <= 1:
                continue
            orig_param = startup_program.global_block().vars[varname]
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
443 444
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
445
        Get parameter server side program.
446

Y
yi.wu 已提交
447 448
        Args:
            endpoint (str): current parameter server endpoint.
449

Y
yi.wu 已提交
450 451
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
452
        """
Y
yi.wu 已提交
453 454 455 456 457
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.

T
typhoonzero 已提交
458 459
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
460
        pserver_program.random_seed = self.origin_program.random_seed
461
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
462 463 464 465 466 467 468 469
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
470 471 472 473 474
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
475 476 477 478 479 480 481 482 483
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
484
            if self.sync_mode and self.trainer_num > 1:
485
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
486 487 488 489 490 491 492 493 494
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
495

Q
qiaolongfei 已提交
496
        # step 3
497
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
498 499 500
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
501
        # step 3.2
T
typhoonzero 已提交
502 503 504 505
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
506 507
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
508
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
509
        # step 3.3
T
typhoonzero 已提交
510
        # Iterate through the ops, and if an op and the optimize ops
511
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
512
        # append it into the sub program.
T
typhoonzero 已提交
513 514 515

        global_ops = []

Y
wip  
yi.wu 已提交
516 517
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
518
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
519
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
520
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
521
            elif op not in lr_ops:
Q
Qiyang Min 已提交
522
                self._append_pserver_non_opt_ops(block, op)
523 524 525 526 527 528

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
529

Y
Yancey1989 已提交
530
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
531 532 533 534 535 536 537 538
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
Y
Yancey1989 已提交
539
            new_sub_block = program.create_block(lr_block.idx)
Q
Qiyang Min 已提交
540 541 542

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
543
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
544 545

            # clone ops
Y
Yancey1989 已提交
546 547
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
548
                # clone sub_block of op
Y
Yancey1989 已提交
549
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
550 551 552 553

            # reset the block of op
            op.set_attr('sub_block', new_sub_block)

554
        # append lr decay ops to the child block if exists
555
        lr_ops = self._get_lr_ops()
556 557
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
558
        if len(lr_ops) > 0:
Q
qiaolongfei 已提交
559 560
            lr_decay_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
561
            optimize_blocks.append(lr_decay_block)
562
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
563
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
564
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
565 566
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
567

T
typhoonzero 已提交
568
        # append op to the current block
Q
qiaolongfei 已提交
569
        grad_to_block_id = []
Q
qiaolongfei 已提交
570
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
571
        for idx, opt_op in enumerate(opt_op_on_pserver):
572
            per_opt_block = pserver_program.create_block(pre_block_idx)
573
            optimize_blocks.append(per_opt_block)
574
            # append grad merging ops before clip and weight decay
575
            # cases may like:
T
typhoonzero 已提交
576
            # L2Decay op -> clip op -> optimize
577 578 579 580 581 582 583
            for _, op in enumerate(self.optimize_ops):
                # find the origin @GRAD var before clipping
                grad_varname_for_block = __op_have_grad_input__(op)
                if ufind.is_connected(op, opt_op) and grad_varname_for_block:
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
T
typhoonzero 已提交
584
                    break  # append optimize op once then append other ops.
T
typhoonzero 已提交
585 586
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
587
                if ufind.is_connected(op, opt_op) and op not in global_ops:
588
                    __append_optimize_op__(op, per_opt_block, grad_to_block_id,
Y
wip  
yi.wu 已提交
589
                                           merged_var, lr_ops)
T
typhoonzero 已提交
590

W
Wu Yi 已提交
591 592
        # dedup grad to ids list
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
593
        # append global ops
594
        if global_ops:
Q
qiaolongfei 已提交
595 596
            opt_state_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
597
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
598
            for glb_op in global_ops:
X
Xi Chen 已提交
599
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
600
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
601

602
        # process distributed lookup_table
Q
qiaolongfei 已提交
603
        prefetch_var_name_to_block_id = []
604 605
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
606
            table_opt_block = self._create_table_optimize_block(
607
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
608
            optimize_blocks.append(table_opt_block)
Q
qiaolongfei 已提交
609
            prefetch_var_name_to_block_id = self._create_prefetch_block(
610
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
611 612
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
613 614 615 616

        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
Q
qiaolongfei 已提交
617
            assert len(prefetch_var_name_to_block_id) > 0
618
        else:
Q
qiaolongfei 已提交
619
            assert len(prefetch_var_name_to_block_id) == 0
620

621
        attrs = {
622
            "optimize_blocks": optimize_blocks,
623 624 625
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
626
            "grad_to_block_id": grad_to_block_id,
627 628 629 630
        }
        if len(prefetch_var_name_to_block_id) > 0:
            attrs['prefetch_var_name_to_block_id'] \
                = prefetch_var_name_to_block_id
T
tangwei12 已提交
631
            attrs['checkpint_block_id'] = checkpoint_block_id
632

T
typhoonzero 已提交
633 634 635 636 637
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
638
            attrs=attrs)
639

W
Wu Yi 已提交
640
        pserver_program._sync_with_cpp()
T
typhoonzero 已提交
641 642
        return pserver_program

643 644 645 646
    def get_startup_program(self,
                            endpoint,
                            pserver_program,
                            startup_program=None):
T
typhoonzero 已提交
647 648 649 650
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
651 652 653 654 655

        Args:
            endpoint (str): current pserver endpoint.
            pserver_program (Program): call get_pserver_program first and
                pass the result here.
656 657
            startup_program (Program): if pass None, will use
                default_startup_program
658

Y
yi.wu 已提交
659 660
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
661 662
        """
        s_prog = Program()
663 664 665 666
        if not startup_program:
            orig_s_prog = default_startup_program()
        else:
            orig_s_prog = startup_program
X
Xin Pan 已提交
667
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
668 669 670 671 672 673 674 675 676 677 678
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
679
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
680
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
681
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
682 683 684 685
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
686
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
687 688
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
689 690 691 692 693 694 695 696 697 698
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
699 700

            if op_on_pserver:
701 702 703
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
704 705 706
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
G
gongweibao 已提交
707
                    op.set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
708 709 710 711
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
712
                    attrs=op.all_attrs())
T
typhoonzero 已提交
713 714
        return s_prog

715 716
    # ====================== private transpiler functions =====================

Y
yi.wu 已提交
717 718 719 720 721 722 723 724 725
    def _has_distributed_lookup_table(self):
        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in self.origin_program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
G
gongweibao 已提交
726
                if op.attr('is_distributed') is True:
Y
yi.wu 已提交
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        return len(distributed_lookup_table_ops) > 0

    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
778
    def _init_splited_vars(self):
Y
yi.wu 已提交
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
802
        if self.config.slice_var_up:
Y
yi.wu 已提交
803 804
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
805 806 807
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
808
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
809 810
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
811 812 813
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
814 815 816 817
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
818 819
        assert (len(grad_blocks) == len(param_blocks))

820
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
821 822
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
823
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
824 825 826 827
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
828
        # dict(grad_splited_var -> param_splited_var)
829
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
830 831 832 833
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] =  \
834
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
835 836

        # create mapping of endpoint -> split var to create pserver side program
837
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
838 839 840 841 842 843 844 845 846
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

847
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
848 849
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
850
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
Q
qiaolongfei 已提交
851 852 853 854 855 856 857 858 859
        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_input_vars = []

        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_output_vars = []
860 861 862 863 864 865 866 867 868

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

869
                    lookup_table_op_index = list(all_ops).index(op)
870 871 872
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
873
                    ids_var = program.global_block().vars[ids_name[0]]
W
Wu Yi 已提交
874
                    prefetch_input_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
875 876 877 878 879 880
                        source_var=ids_var,
                        block=program.global_block(),
                        tag="_prefetch_in_")
                    self.all_prefetch_input_vars.append(prefetch_input_vars)

                    out_var = program.global_block().vars[out_name[0]]
W
Wu Yi 已提交
881
                    prefetch_output_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
882 883 884 885
                        source_var=out_var,
                        block=program.global_block(),
                        tag="_prefetch_out_")
                    self.all_prefetch_output_vars.append(prefetch_output_vars)
886 887

                    # insert split_ids_op
W
Wu Yi 已提交
888
                    program.global_block()._insert_op(
889
                        index=lookup_table_op_index,
890 891 892 893 894 895 896
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
Q
qiaolongfei 已提交
897
                        outputs={"Out": prefetch_input_vars})
898 899

                    # insert prefetch_op
W
Wu Yi 已提交
900
                    program.global_block()._insert_op(
901
                        index=lookup_table_op_index + 1,
902
                        type="prefetch",
Q
qiaolongfei 已提交
903 904
                        inputs={'X': prefetch_input_vars},
                        outputs={"Out": prefetch_output_vars},
Y
Yancey1989 已提交
905
                        attrs={
906
                            "epmap": pserver_endpoints,
907 908 909
                            # FIXME(qiao) temporarily disable this config because prefetch
                            # is not act as other rpc op, it's more like a forward op
                            # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
910
                        })
911 912

                    # insert concat_op
W
Wu Yi 已提交
913
                    program.global_block()._insert_op(
914 915 916 917 918 919 920
                        index=lookup_table_op_index + 2,
                        type="merge_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ],
921
                            'X': prefetch_output_vars
922
                        },
923 924 925 926 927
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
928
                        })
929 930

                    # delete lookup_table_op
931
                    delete_ops(program.global_block(), [op])
932 933 934
                    # break for loop
                    break

Y
Yancey1989 已提交
935
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
936
        # 2. add split_ids_op and send_op to send gradient to pservers
937 938
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
939
        table_grad_name = grad_var_name(self.table_name)
940 941 942 943
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
944
                program.global_block()._insert_op(
945 946 947 948 949
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
950
                    outputs={"Out": self.trainer_side_table_grad_list})
W
Wu Yi 已提交
951
                program.global_block()._insert_op(
952
                    index=op_index + 2,
953
                    type="send",
954
                    inputs={'X': self.trainer_side_table_grad_list},
955
                    outputs={'Out': []},
Y
Yancey1989 已提交
956
                    attrs={
957
                        "sync_mode": True,
Y
Yancey1989 已提交
958
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
959 960 961 962 963
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
964
                    })
965 966 967 968 969 970
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
        prefetch_var_name_to_block_id = []
        for index in range(len(self.all_prefetch_input_vars)):
            prefetch_block = pserver_program.create_block(optimize_block.idx)
            trainer_ids = self.all_prefetch_input_vars[index][pserver_index]
            pserver_ids = pserver_program.global_block().create_var(
                name=trainer_ids.name,
                type=trainer_ids.type,
                shape=trainer_ids.shape,
                dtype=trainer_ids.dtype)
            trainer_out = self.all_prefetch_output_vars[index][pserver_index]
            pserver_out = pserver_program.global_block().create_var(
                name=trainer_out.name,
                type=trainer_out.type,
                shape=trainer_out.shape,
                dtype=trainer_out.dtype)
            prefetch_block.append_op(
                type="lookup_sparse_table",
                inputs={'Ids': pserver_ids,
                        "W": table_var},
                outputs={"Out": pserver_out},
                attrs={
                    "is_sparse": True,  # has no effect on lookup_table op
                    "is_distributed": True,
                    "padding_idx": -1
                })
            prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
                prefetch_block.idx))
        return prefetch_var_name_to_block_id
999 1000

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1001
                                     pre_block_idx, grad_to_block_id):
1002 1003
        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
1004 1005
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1006

T
tangwei12 已提交
1007
        zero_dim = int(
T
tangwei12 已提交
1008 1009 1010 1011
            math.ceil(origin_param_var.shape[0] / len(self.pserver_endpoints)))
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1012 1013
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1014
            shape=table_shape,
Y
Yancey1989 已提交
1015 1016 1017
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1018 1019
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1020
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1021
            self.origin_program.global_block().vars[grad_var_name(
1022
                self.table_name)])
1023 1024 1025 1026

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
1027 1028
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1029
        ][0]
Q
qiaolongfei 已提交
1030
        table_opt_block = pserver_program.create_block(pre_block_idx)
1031

1032 1033 1034
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1035
            pserver_side_table_grad_list = [
1036 1037 1038 1039 1040 1041 1042 1043 1044
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1045
            # append sum op for pserver_side_table_grad_list
1046 1047
            table_opt_block.append_op(
                type="sum",
1048
                inputs={"X": pserver_side_table_grad_list},
1049 1050
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1051 1052
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1053
            origin_grad_name = grad_var.name
1054 1055
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1056 1057
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1058
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1059
            grad_var = pserver_program.global_block()._rename_var(
1060
                origin_grad_name, splited_grad_name)
1061 1062 1063 1064 1065 1066 1067 1068 1069

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1070
        # only support sgd now
1071 1072 1073 1074
        import logging
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1075
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1076

1077 1078 1079
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1080 1081
        return table_opt_block

T
tangwei12 已提交
1082 1083 1084 1085 1086 1087
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """
        import os

T
tangwei12 已提交
1088
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1089
            name="kLookupTablePath",
T
tangwei12 已提交
1090 1091
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1092

T
tangwei12 已提交
1093
        checkpoint_save_block = pserver_program.create_block(pre_block_idx)
T
tangwei12 已提交
1094
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1095 1096 1097 1098
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1099
            attrs={'file_path': "none"})
T
tangwei12 已提交
1100 1101 1102

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1103 1104 1105 1106 1107
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1108
        Create vars for each split.
T
typhoonzero 已提交
1109 1110
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1111 1112 1113 1114
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1115
        Returns:
1116
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1117
                from original var name to each var split.
T
typhoonzero 已提交
1118
        """
1119 1120

        # varname->[(block_id, current_block_size)]
1121
        block_map = collections.OrderedDict()
1122

1123
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1124 1125
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1126
            if varname not in block_map:
T
typhoonzero 已提交
1127
                block_map[varname] = []
1128
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1129

M
minqiyang 已提交
1130
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1131
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1132
            if len(splited) == 1:
1133
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1134 1135
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1136
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1137 1138 1139 1140 1141
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1142
                continue
T
typhoonzero 已提交
1143
            var_mapping[varname] = []
T
typhoonzero 已提交
1144 1145 1146 1147
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1148

T
typhoonzero 已提交
1149
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1150
                size = block[1]
M
minqiyang 已提交
1151
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1152 1153 1154
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1155
                new_var_name = ""
1156
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1157 1158 1159 1160 1161
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
1162
                var = program.global_block().create_var(
T
typhoonzero 已提交
1163 1164
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1165
                    dtype=orig_var.dtype,
1166
                    type=orig_var.type,
T
typhoonzero 已提交
1167
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1168
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1169
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1170
        return var_mapping
T
done  
typhoonzero 已提交
1171

W
Wu Yi 已提交
1172
    def _create_splited_vars(self, source_var, block, tag):
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1183 1184 1185 1186 1187 1188
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1189
            persistable=persistable)
T
done  
typhoonzero 已提交
1190

Y
Yancey1989 已提交
1191
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1192 1193 1194 1195
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
W
Wu Yi 已提交
1196
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1197 1198 1199 1200 1201 1202 1203 1204 1205
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"height_sections": height_sections})
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
W
Wu Yi 已提交
1206
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1207 1208 1209 1210 1211 1212 1213 1214 1215
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"sections": sections}  # assume split evenly
            )
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1216

T
typhoonzero 已提交
1217 1218 1219 1220
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1221
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

1244 1245
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1246
        orig_var_name = ""
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1257
        else:
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
            return
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1285
        else:
1286 1287 1288 1289 1290 1291
            merged_var_name = orig_varname
        merged_var = \
            pserver_block.vars[merged_var_name]
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1292
            for i in range(self.trainer_num):
1293 1294 1295 1296 1297 1298 1299
                per_trainer_name = "%s.trainer_%d" % \
                (merged_var_name, i)
                vars2merge.append(pserver_block.vars[per_trainer_name])

            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1300 1301
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
1302 1303 1304 1305 1306 1307 1308 1309
            # TODO(panyx0718): What if it's SELECTED_ROWS.
            if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                optimize_block.append_op(
                    type="scale",
                    inputs={"X": merged_var},
                    outputs={"Out": merged_var},
                    attrs={"scale": 1.0 / float(self.trainer_num)})
        return merged_var
T
typhoonzero 已提交
1310

1311
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1312
                            grad_to_block_id, origin_program, merged_var):
1313
        program = optimize_block.program
T
typhoonzero 已提交
1314
        pserver_block = program.global_block()
1315
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1316

T
typhoonzero 已提交
1317 1318
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
W
Wu Yi 已提交
1319 1320 1321 1322 1323 1324 1325 1326 1327
        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

T
typhoonzero 已提交
1328
        for key in opt_op.input_names:
T
typhoonzero 已提交
1329 1330
            if key == "Grad":
                new_inputs[key] = merged_var
W
Wu Yi 已提交
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
            # For RMSProp optimizer
            elif key == "Moment" or key == "MeanSquare":
                param_block = _get_param_block(opt_op)
                if not param_block:
                    return
                moment_var = origin_program.global_block().vars[opt_op.input(
                    key)[0]]
                tmpvar = pserver_block.create_var(
                    name=moment_var.name,
                    persistable=moment_var.persistable,
                    dtype=moment_var.dtype,
                    # change to use same shape as param
                    # TODO(typhoonzero): didn't append .block in the var name,
                    # may affect checkpoint saving? Need to verify.
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
T
typhoonzero 已提交
1347
            elif key == "Param":
W
Wu Yi 已提交
1348
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1349 1350
                if not param_block:
                    return
T
typhoonzero 已提交
1351
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1352
                    name=param_block.name,
T
typhoonzero 已提交
1353
                    persistable=True,
T
typhoonzero 已提交
1354 1355 1356
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1357
            elif key == "LearningRate":
1358
                # learning rate variable has already be created by non-optimize op,
1359
                # don't create it once again.
1360
                lr_varname = opt_op.input(key)[0]
1361
                if lr_varname in pserver_block.vars:
1362 1363 1364 1365 1366 1367 1368 1369 1370
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1371

T
typhoonzero 已提交
1372
        for key in opt_op.input_names:
1373
            new_shape = None
W
Wu Yi 已提交
1374
            if key in ["Param", "Grad", "LearningRate", "Moment", "MeanSquare"]:
T
typhoonzero 已提交
1375
                continue
1376
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1377 1378 1379 1380
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1381
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1382 1383 1384 1385 1386
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1387

1388
        # change output's ParamOut variable
1389 1390
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1391
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
1392

1393
        optimize_block.append_op(
T
typhoonzero 已提交
1394 1395
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1396
            outputs=outputs,
G
gongweibao 已提交
1397
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1398

1399 1400
    def _is_splited_grad_var(self, var, var_dict):
        grad_block = None
M
minqiyang 已提交
1401
        for _, g in six.iteritems(var_dict):
1402 1403 1404 1405 1406 1407
            if self._orig_varname(g.name) == self._orig_varname(var.name):
                if g.name.find(".trainer_") == -1:
                    grad_block = g
                    break
        return grad_block

Q
Qiyang Min 已提交
1408 1409 1410
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1411
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
1412 1413 1414 1415
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1416
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1417 1418 1419

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1420
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
1421 1422 1423 1424
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1425
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1426

Y
Yancey1989 已提交
1427
        return block.append_op(
G
gongweibao 已提交
1428
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1429 1430

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1431
        program = optimize_block.program
1432
        # Append the ops for parameters that do not need to be optimized/updated
1433 1434
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1435
        for key, varlist in six.iteritems(inputs):
1436 1437
            if not isinstance(varlist, list):
                varlist = [varlist]
T
typhoonzero 已提交
1438
            for var in varlist:
1439 1440 1441 1442 1443 1444
                # for ops like clipping and weight decay, get the splited var
                # for inputs/outputs
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    inputs[key] = grad_block
1445
                elif var.name not in program.global_block().vars:
1446
                    program.global_block().create_var(
T
typhoonzero 已提交
1447 1448 1449 1450 1451
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1452 1453
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1454
        for key, varlist in six.iteritems(outputs):
1455 1456 1457
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
1458 1459 1460 1461
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    outputs[key] = grad_block
1462
                elif var.name not in program.global_block().vars:
W
Wu Yi 已提交
1463
                    program.global_block()._clone_variable(var)
1464

Y
Yancey1989 已提交
1465
        return optimize_block.append_op(
T
typhoonzero 已提交
1466
            type=opt_op.type,
T
typhoonzero 已提交
1467 1468
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
1469
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1470

1471 1472 1473 1474
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1475 1476
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
           set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1477 1478 1479 1480 1481 1482
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1483 1484
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1485 1486 1487 1488 1489 1490
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1491
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1492 1493
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1494 1495 1496 1497 1498 1499 1500
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1501
        if op.input("Param")[0] in param_names:
1502 1503 1504
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1505
                param = op.input("Param")[0]
T
typhoonzero 已提交
1506
                if same_or_split_var(n, param) and n != param:
1507 1508 1509
                    return True
            return False

T
typhoonzero 已提交
1510
    def _get_input_map_from_op(self, varmap, op):
1511
        """Returns a dict from op input name to the vars in varmap."""
1512
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1524
        """Returns a dict from op output name to the vars in varmap."""
1525
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1526 1527 1528 1529 1530 1531 1532 1533 1534
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1535 1536 1537 1538 1539 1540

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1541
            if self._is_optimizer_op(op):
1542 1543 1544 1545
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1546
        block = self.origin_program.global_block()
1547 1548 1549 1550 1551
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1552

1553 1554 1555 1556 1557
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
1558
                    not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1559 1560 1561 1562 1563 1564
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1565 1566
                    # we only need to append op for once
                    break
1567
        return lr_ops
Y
Yancey1989 已提交
1568

W
Wu Yi 已提交
1569 1570 1571 1572 1573
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
1574 1575
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
1576 1577 1578
            return True
        return False

Y
Yancey1989 已提交
1579
    def _get_optimize_pass(self):
1580
        """
1581
        Get optimizer operators, parameters and gradients from origin_program
1582 1583 1584 1585
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1586 1587 1588
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1589
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1590
        for op in block.ops:
W
Wu Yi 已提交
1591
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1592
                opt_ops.append(op)
1593 1594 1595 1596 1597
                # HACK(wuyi): if we find grad vars from input of optimize
                # ops, we may get the output of clip op. Use syntax "@GRAD"
                # and op_role_var to get the pair.
                for input_name in op.input_arg_names:
                    if input_name.find("@GRAD") != -1 and \
G
gongweibao 已提交
1598 1599
                        op.attr(RPC_OP_ROLE_ATTR_NAME):
                        param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1600 1601 1602 1603
                        params_grads.append([
                            origin_var_dict[param_name],
                            origin_var_dict[input_name]
                        ])
Y
Yancey1989 已提交
1604 1605 1606
            else:
                pass
        return opt_ops, params_grads