prelu_op.cc 6.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Z
zchen0211 已提交
11

Y
Yi Wang 已提交
12
#include "paddle/fluid/operators/prelu_op.h"
13
#include <memory>
14
#include <string>
Z
zchen0211 已提交
15 16 17 18

namespace paddle {
namespace operators {

Z
fix  
zchen0211 已提交
19
class PReluOp : public framework::OperatorWithKernel {
Z
zchen0211 已提交
20
 public:
Z
fix  
zchen0211 已提交
21
  PReluOp(const std::string &type, const framework::VariableNameMap &inputs,
Z
zchen0211 已提交
22 23 24 25
          const framework::VariableNameMap &outputs,
          const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

26
  void InferShape(framework::InferShapeContext *ctx) const override {
27 28 29
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "prelu");
    OP_INOUT_CHECK(ctx->HasInput("Alpha"), "Input", "Alpha", "prelu");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "prelu");
J
jerrywgz 已提交
30 31

    auto x_dim = ctx->GetInputDim("X");
32
    std::string mode = ctx->Attrs().Get<std::string>("mode");
J
jerrywgz 已提交
33
    if (mode == "all") {
34 35 36 37
      PADDLE_ENFORCE_EQ(
          product(ctx->GetInputDim("Alpha")), 1,
          platform::errors::InvalidArgument(
              "For mode 'all', size of weight Alpha must be one."));
J
jerrywgz 已提交
38
    } else if (mode == "channel") {
39 40 41 42 43 44
      PADDLE_ENFORCE_EQ(product(ctx->GetInputDim("Alpha")), x_dim[1],
                        platform::errors::InvalidArgument(
                            "For mode 'channel', size of weight Alpha must be "
                            "equal to the number of channels of input(x). But "
                            "recevied alpha's size: %d, x_dim[1]: %d",
                            product(ctx->GetInputDim("Alpha")), x_dim[1]));
J
jerrywgz 已提交
45
    } else if (mode == "element") {
46 47 48
      auto alpha_dim = ctx->GetInputDim("Alpha");
      auto alpha_rank = alpha_dim.size();
      auto x_rank = x_dim.size();
49 50 51 52 53 54 55
      PADDLE_ENFORCE_EQ(
          alpha_rank, x_rank,
          platform::errors::InvalidArgument(
              "For mode 'element', rank of weight Alpha must be ",
              "equal to the rank of input(x). But recevied alpha's rank: %d, "
              "x's rank: %d.",
              alpha_rank, x_rank));
56 57 58 59 60 61
      size_t x_product = 1;
      size_t alpha_product = 1;
      for (int64_t i = x_rank - 1; i > 0; i--) {
        x_product *= x_dim[i];
        alpha_product *= alpha_dim[i];
      }
62 63 64 65 66 67 68
      PADDLE_ENFORCE_EQ(
          alpha_product, x_product,
          platform::errors::InvalidArgument(
              "For mode 'element', the size of weight Alpha must be "
              "equal to the size of input(x). But recevied alpha's size: %d, "
              "x's size: %d.",
              alpha_product, x_product));
J
jerrywgz 已提交
69 70 71
    } else {
      PADDLE_THROW("Unkown mode %s", mode);
    }
72
    ctx->ShareDim("X", /*->*/ "Out");
Q
Qiao Longfei 已提交
73
    ctx->ShareLoD("X", /*->*/ "Out");
Z
zchen0211 已提交
74
  }
J
jerrywgz 已提交
75 76 77 78

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
79 80 81
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
J
jerrywgz 已提交
82
  }
Z
zchen0211 已提交
83 84
};

Z
fix  
zchen0211 已提交
85
class PReluOpMaker : public framework::OpProtoAndCheckerMaker {
Z
zchen0211 已提交
86
 public:
Y
Yu Yang 已提交
87
  void Make() override {
Z
zchen0211 已提交
88
    AddInput("X", "The input tensor of prelu operator.");
K
kexinzhao 已提交
89 90 91 92
    AddInput("Alpha", "The alpha weight of prelu operator.");
    AddOutput("Out", "The output tensor of prelu operator.");
    AddComment(R"DOC(
PRelu Operator.
Z
zchen0211 已提交
93
The equation is:
K
kexinzhao 已提交
94 95 96 97 98 99 100
$$
f(x) =
\begin{cases}
\alpha * x, \quad  \text{if} \ x < 0 \\
x,         \qquad  \text{if} \ x >= 0
\end{cases}
$$
101
The input `X` can carry the LoD (Level of Details) information,
K
kexinzhao 已提交
102
or not. And the output shares the LoD information with input `X`.
103
There are modes:
J
jerrywgz 已提交
104 105
  all: all elements share same weight
  channel: elements in a channel share same weight
106
  element: each element has a weight
Z
zchen0211 已提交
107
)DOC");
J
jerrywgz 已提交
108 109
    AddAttr<std::string>("mode", "The mode for inputs to share weights.")
        .SetDefault("all");
Z
zchen0211 已提交
110 111 112 113
  }
};

// The operator to calculate gradients of a prelu operator.
Z
fix  
zchen0211 已提交
114
class PReluGradOp : public framework::OperatorWithKernel {
Z
zchen0211 已提交
115 116 117
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

118
  void InferShape(framework::InferShapeContext *ctx) const override {
119 120 121 122
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "prelu");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   "Out@GRAD", "prelu");

J
jerrywgz 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136
    auto x_grad_name = framework::GradVarName("X");
    auto alpha_grad_name = framework::GradVarName("Alpha");

    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("X"));
    }
    if (ctx->HasOutput(alpha_grad_name)) {
      ctx->SetOutputDim(alpha_grad_name, ctx->GetInputDim("Alpha"));
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
137 138 139
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
Z
zchen0211 已提交
140 141 142
  }
};

143 144 145 146 147 148
template <typename T>
class PReluGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
149
  void Apply(GradOpPtr<T> op) const override {
150 151 152 153 154 155 156 157 158 159
    op->SetType("prelu_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("Alpha", this->Input("Alpha"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Alpha"), this->InputGrad("Alpha"));
    op->SetAttrMap(this->Attrs());
  }
};

Z
zchen0211 已提交
160 161 162 163 164
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

165 166 167
REGISTER_OPERATOR(prelu, ops::PReluOp, ops::PReluOpMaker,
                  ops::PReluGradOpMaker<paddle::framework::OpDesc>,
                  ops::PReluGradOpMaker<paddle::imperative::OpBase>);
168
REGISTER_OPERATOR(prelu_grad, ops::PReluGradOp);
Q
QI JUN 已提交
169
REGISTER_OP_CPU_KERNEL(
170 171
    prelu, ops::PReluKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PReluKernel<paddle::platform::CPUDeviceContext, double>);
Q
QI JUN 已提交
172
REGISTER_OP_CPU_KERNEL(
173 174
    prelu_grad, ops::PReluGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PReluGradKernel<paddle::platform::CPUDeviceContext, double>);