optimizer.py 167.1 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16

17
import numpy as np
18
from collections import defaultdict
19

Q
Qiao Longfei 已提交
20
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table
21
from paddle.fluid.framework import Program, Variable, name_scope, default_main_program, default_startup_program, device_guard
22

23 24
from . import framework
from . import layers
25
from . import unique_name
26
from .backward import append_backward, _some_in_set_, _append_grad_suffix_, _get_no_grad_set_name
27
from .clip import GradientClipBase, error_clip_callback, append_gradient_clip_ops
28 29 30
from .framework import program_guard
from .initializer import Constant
from .layer_helper import LayerHelper
S
sneaxiy 已提交
31
from .layers import ops
32
from .regularizer import append_regularization_ops
33
from .dygraph import base as imperative_base
34
from .dygraph import no_grad
35 36 37 38
from .dygraph.learning_rate_scheduler import LearningRateDecay
from paddle.fluid import core
from paddle.fluid.layers import tensor
from functools import reduce
39
from .wrapped_decorator import signature_safe_contextmanager
M
mapingshuo 已提交
40
from .. import compat as cpt
41

42
__all__ = [
43 44 45 46
    'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'Dpsgd', 'DecayedAdagrad',
    'Ftrl', 'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer',
    'AdamOptimizer', 'AdamaxOptimizer', 'DpsgdOptimizer',
    'DecayedAdagradOptimizer', 'RMSPropOptimizer', 'FtrlOptimizer', 'Adadelta',
Z
Zeng Jinle 已提交
47 48 49 50
    'AdadeltaOptimizer', 'ModelAverage', 'LarsMomentum',
    'LarsMomentumOptimizer', 'DGCMomentumOptimizer', 'LambOptimizer',
    'ExponentialMovingAverage', 'PipelineOptimizer', 'LookaheadOptimizer',
    'RecomputeOptimizer'
51
]
Q
Qiao Longfei 已提交
52 53 54 55 56 57


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
58 59
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
60 61
    """

62
    @imperative_base.no_grad
63 64 65 66 67 68
    def __init__(self,
                 learning_rate,
                 parameter_list=None,
                 regularization=None,
                 name=None):
        self._parameter_list = None
L
lujun 已提交
69
        if framework.in_dygraph_mode():
M
minqiyang 已提交
70 71 72 73 74
            if not isinstance(learning_rate, float) and \
                    not isinstance(learning_rate, LearningRateDecay):
                raise TypeError(
                    "learning rate should be float or LearningRateDecay, got %s here"
                    % type(learning_rate))
75 76 77 78
            if name is not None:
                self._name = unique_name.generate(name)
            else:
                self._name = unique_name.generate(self.__class__.__name__)
79 80 81 82 83 84
            if parameter_list is not None:
                self._parameter_list = parameter_list
            else:
                raise AttributeError(
                    "parameter_list argument given to the Optimizer should not be None in dygraph mode."
                )
M
minqiyang 已提交
85 86 87 88 89 90
        else:
            if not isinstance(learning_rate, float) and \
                    not isinstance(learning_rate, framework.Variable):
                raise TypeError(
                    "learning rate should be float or Variable, got %s here" %
                    type(learning_rate))
91
            self._name = name
M
minqiyang 已提交
92

D
dzhwinter 已提交
93
        self.regularization = regularization
94
        self._learning_rate = learning_rate
D
dzhwinter 已提交
95 96
        # the learning rate type should be inferenced from loss
        self._dtype = None
97
        # each program should have a independent learning rate
98
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
99
        self._learning_rate_map = dict()
100
        if isinstance(self._learning_rate, framework.Variable):
101 102
            self._learning_rate_map[framework.default_main_program(
            )] = self._learning_rate
103 104 105 106 107
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
108
        self.helper = None
109
        self._opti_name_list = []
H
hong 已提交
110
        self._accumulators_holder = {}
111
        self._param_device_map = dict()
112 113
        # if pass grad_clip into minimize, it will not be None
        self._grad_clip = None
H
hong 已提交
114 115 116 117

    @framework.dygraph_only
    def state_dict(self):
        '''
T
tianshuo78520a 已提交
118 119
        Get state dict information from optimizer. It contain all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be include in state dict.
        If the optimizer never be called(minimize function), the state_dict is empty.
H
hong 已提交
120 121 122

        Args: None
        Return:
T
tianshuo78520a 已提交
123
            state_dict(dict) : dict contains all the variable used by optimizer
H
hong 已提交
124 125 126 127 128
        
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
129 130 131 132 133 134

                with fluid.dygraph.guard():
                    emb = fluid.dygraph.Embedding([10, 10])

                    adam = fluid.optimizer.Adam(0.001, parameter_list=emb.parameters())
                    state_dict = adam.state_dict()
H
hong 已提交
135 136 137 138 139 140 141 142

        '''
        state_dict = {}
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                state_dict[var_tmp.name] = var_tmp
        # global step if use lr decay
        if isinstance(self._learning_rate, LearningRateDecay):
143
            var_tmp = None
L
Leo Chen 已提交
144
            if framework.in_dygraph_mode():
145 146
                var_temp = framework._varbase_creator(
                    None, name='global_step', dtype='int32')
L
Leo Chen 已提交
147 148
            else:
                var_temp = Variable(None, name='global_step', dtype='int32')
149

H
hong 已提交
150 151 152 153 154 155 156 157 158
            tensor.fill_constant(
                [1], "int32", self._learning_rate.step_num, out=var_temp)

            state_dict['global_step'] = var_temp
        return state_dict

    @framework.dygraph_only
    def set_dict(self, state_dict):
        '''
T
tianshuo78520a 已提交
159
        Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be changed.
H
hong 已提交
160 161 162 163 164 165 166 167

        Args: 
            state_dict(dict) : Dict contains all the Variable needed by optimizer
        Return:
            None
        
        Examples:
            .. code-block:: python
168

H
hong 已提交
169
                with fluid.dygraph.guard():
170
                    emb = fluid.dygraph.Embedding([10, 10])
171

H
hong 已提交
172
                    state_dict = emb.state_dict()
173
                    fluid.save_dygraph(state_dict, "paddle_dy")
174

175 176
                    adam = fluid.optimizer.Adam(learning_rate=fluid.layers.noam_decay( 100, 10000), 
                                                parameter_list=emb.parameters())
H
hong 已提交
177
                    state_dict = adam.state_dict()
178
                    fluid.save_dygraph(state_dict, "paddle_dy")
179

H
hong 已提交
180
                    para_state_dict, opti_state_dict = fluid.load_dygraph( "paddle_dy")
181

182
                    adam.set_dict(opti_state_dict)
H
hong 已提交
183 184 185 186 187 188 189 190 191

        '''

        if isinstance(self._learning_rate, LearningRateDecay):
            assert 'global_step' in state_dict, \
                    'Global step not in state dict, Dygraph use LearningRateDecay, global_step must in state_dict'
            global_step = state_dict['global_step']

            if isinstance(global_step, core.VarBase):
192
                step_np = global_step
H
hong 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
                step_np = np.array(step_np.value().get_tensor())
                assert step_np.shape == (1,),  \
                        "global step shape is (1,), the shape is {}".format( step_np.shape )

                self._learning_rate.step_num = int(step_np[0])
            elif isinstance(global_step, Variable):
                step_np = global_step.numpy()
                assert step_np.shape == (1,),  \
                        "global step shape is (1,), the shape is {}".format( step_np.shape )
                self._learning_rate.step_num = step_np[0]
            elif isinstance(global_step, np.ndarray):
                assert global_step.shape == (1,),  \
                        "global step shape is (1,), the shape is {}".format( global_step.shape )
                self._learning_rate.step_num = global_step[0]
            else:
                raise RuntimeError(
                    "Type not supprt, value in state dict must be [VarBase, Variable, numpy], the type is ",
                    type(global_step))

        self._accumulators_holder = state_dict
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                assert var_tmp.name in state_dict, \
                        "optimizer variable {} not found".format( var_tmp.name )
217
                var = var_tmp.value()
H
hong 已提交
218 219 220 221 222 223 224 225
                tensor = var.get_tensor()
                model_np = np.array(tensor)

                load_para = state_dict[var_tmp.name]

                if isinstance(load_para, Variable):
                    load_para_np = load_para.numpy()
                elif isinstance(load_para, core.VarBase):
226
                    load_para_np = load_para.numpy()
H
hong 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
                elif isinstance(load_para, np.ndarray):
                    load_para_np = load_para
                else:
                    raise RuntimeError("State dict type {} not supprt".format(
                        str(type(load_para))))

                assert model_np.shape == load_para_np.shape,  \
                                          "Parameter shape not match, Dygraph Parameter [ {} ] need tensor with shape {} but load tensor with shape {}".format(
                                                 item.name, model_np.shape, load_para_np.shape)

                assert model_np.dtype == load_para_np.dtype, \
                                          "Parameter dtype not match, Dygraph Parameter [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                                                item.name, model_np.dtype, load_para_np.dtype)

                tensor.set(load_para_np, framework._current_expected_place())
242

243 244
    def get_opti_var_name_list(self):
        return self._opti_name_list
Q
Qiao Longfei 已提交
245

Q
Qiao Longfei 已提交
246
    def _create_global_learning_rate(self):
247 248 249
        if imperative_base.enabled():
            # create learning rate Variable
            if isinstance(self._learning_rate, float):
M
minqiyang 已提交
250 251 252 253 254 255 256 257 258 259 260 261
                lr = self._global_learning_rate()

                if isinstance(lr, framework.Variable):
                    return
                else:
                    self._learning_rate_map[framework.default_main_program(
                    )] = layers.create_global_var(
                        name=unique_name.generate("learning_rate"),
                        shape=[1],
                        value=float(self._learning_rate),
                        dtype='float32' if self._dtype is None else self._dtype,
                        persistable=True)
262
            # get learning rate Variable from LearningRateDecay
M
minqiyang 已提交
263
            elif isinstance(self._learning_rate, LearningRateDecay):
264 265 266
                self._learning_rate_map[framework.default_main_program(
                )] = self._learning_rate()
            else:
Q
qiaolongfei 已提交
267
                raise TypeError(
268 269
                    "optimizer's learning rate must be float or LearningRateDecay"
                )
270
        else:
271 272 273 274
            lr = self._global_learning_rate()

            if isinstance(lr, framework.Variable):
                return
M
minqiyang 已提交
275 276 277 278 279 280
            else:
                if not isinstance(self._learning_rate, float):
                    raise TypeError(
                        "learning rate variable is create outside optimizer,"
                        "can not create new learning rate variable for new program"
                    )
Q
Qiao Longfei 已提交
281

282 283 284 285 286 287 288 289
            # create learning rate in the current main program
            self._learning_rate_map[framework.default_main_program(
            )] = layers.create_global_var(
                name=unique_name.generate("learning_rate"),
                shape=[1],
                value=float(self._learning_rate),
                dtype='float32' if self._dtype is None else self._dtype,
                persistable=True)
290

291 292 293 294
    @framework.dygraph_only
    def current_step_lr(self):
        """
        .. note::
T
tianshuo78520a 已提交
295
          **This API is ONLY available in Dygraph mode**
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
        
        Get current step learning rate. The return value is all the same When LearningRateDecay is not used,
        otherwise return the step learning rate.

        Returns:
            float: The learning rate of the current step.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                # example1: LearningRateDecay is not used, return value is all the same
                with fluid.dygraph.guard():
                    emb = fluid.dygraph.Embedding([10, 10])
                    adam = fluid.optimizer.Adam(0.001, parameter_list = emb.parameters())
                    lr = adam.current_step_lr()
                    print(lr) # 0.001

                # example2: PiecewiseDecay is used, return the step learning rate
                with fluid.dygraph.guard():
                    inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
                    linear = fluid.dygraph.nn.Linear(10, 10)
                    inp = fluid.dygraph.to_variable(inp)
                    out = linear(inp)
                    loss = fluid.layers.reduce_mean(out)
                    
                    bd = [2, 4, 6, 8]
                    value = [0.2, 0.4, 0.6, 0.8, 1.0]
                    adam = fluid.optimizer.Adam(fluid.dygraph.PiecewiseDecay(bd, value, 0),
                                           parameter_list=linear.parameters())

                    # first step: learning rate is 0.2
                    np.allclose(adam.current_step_lr(), 0.2, rtol=1e-06, atol=0.0) # True

                    # learning rate for different steps
                    ret = [0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0]
                    for i in range(12):
                        adam.minimize(loss)
                        lr = adam.current_step_lr()
                        np.allclose(lr, ret[i], rtol=1e-06, atol=0.0) # True

        """
        current_lr = self._global_learning_rate()
        if current_lr:
            return self._global_learning_rate().numpy()[0]

        if isinstance(self._learning_rate, float):
            return self._learning_rate
        else:
            step_lr = self._learning_rate.step()
            if isinstance(step_lr, (float, int)):
                return step_lr
            else:
                return step_lr.numpy()[0]

Y
yuyang18 已提交
353
    def _global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
354 355 356 357
        """
        get global decayed learning rate
        :return:
        """
358 359
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
360
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
361

Q
Qiao Longfei 已提交
362 363 364 365 366
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

367 368 369 370
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
W
Wu Yi 已提交
371 372
        if type(param_lr) == Variable:
            return param_lr
Q
qiaolongfei 已提交
373
        else:
W
Wu Yi 已提交
374
            if param_lr == 1.0:
Y
yuyang18 已提交
375
                return self._global_learning_rate()
W
Wu Yi 已提交
376
            else:
X
Xin Pan 已提交
377 378 379
                with default_main_program()._lr_schedule_guard(
                        is_with_opt=True), framework.name_scope(
                            'scale_with_param_lr'):
380
                    return self._global_learning_rate() * param_lr
381 382 383 384 385 386 387

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
388
        """
389 390
        pass

391
    def _finish_update(self, block, parameters_and_grads):
392 393 394 395 396 397 398 399
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
Q
qiaolongfei 已提交
400
            None
401 402 403
        """
        pass

404 405 406 407 408
    def _add_accumulator(self,
                         name,
                         param,
                         dtype=None,
                         fill_value=0.0,
409
                         shape=None,
410
                         type=None,
411
                         device=None):
412 413 414 415 416 417 418 419 420
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
W
whs 已提交
421 422
        if self._name is not None:
            name = self._name + "_" + name
423 424
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
L
lujun 已提交
425
            if framework.in_dygraph_mode():
X
polish  
Xin Pan 已提交
426
                return self._accumulators[name][param.name]
427
            raise Exception("Accumulator {} already exists for parameter {}".
428
                            format(name, param.name))
429 430
        if shape == None:
            shape = param.shape
Q
Qiao Longfei 已提交
431
        assert isinstance(self.helper, LayerHelper)
432 433 434 435 436

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

Q
Qiao Longfei 已提交
437
        var = self.helper.create_global_variable(
438
            name=var_name,
Q
Qiao Longfei 已提交
439
            persistable=True,
F
fengjiayi 已提交
440
            dtype=dtype or param.dtype,
441
            type=param.type if type is None else type,
H
hong 已提交
442 443
            shape=shape,
            belong_to_optimizer=True)
444 445 446 447 448
        if device is None:
            device = self._get_device_for_param(param.name)
        with device_guard(device):
            self.helper.set_variable_initializer(
                var, initializer=Constant(value=float(fill_value)))
H
hong 已提交
449 450 451 452 453 454 455

        if framework.in_dygraph_mode():
            if len(self._accumulators_holder) > 0:
                assert var_name in self._accumulators_holder, \
                        "Optimizer set error, {} should in state dict".format( var_name )
                var.set_value(self._accumulators_holder[var_name])

Q
Qiao Longfei 已提交
456
        self._accumulators[name][param.name] = var
457
        return var
458 459 460 461 462 463 464 465 466 467 468

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
W
whs 已提交
469 470
        if self._name is not None:
            name = self._name + "_" + name
471 472 473 474 475 476
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

477 478 479 480 481 482 483 484 485 486 487 488
    def _update_param_device_map(self, parameters_and_grads, target_block):
        for param_and_grad in parameters_and_grads:
            if param_and_grad[0].trainable is True:
                param_name = param_and_grad[0].name
                ops = target_block.ops
                device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName(
                )
                for op in ops:
                    input_arg_names = op.input_arg_names
                    if param_name in input_arg_names:
                        self._param_device_map[param_name] = op.attr(
                            device_attr_name)
489
                        break
490 491 492 493 494 495 496

    def _get_device_for_param(self, param_name):
        device = None
        if param_name in self._param_device_map:
            device = self._param_device_map[param_name]
        return device

497
    def _create_optimization_pass(self, parameters_and_grads):
Q
Qiao Longfei 已提交
498 499 500
        """Add optimization operators to update gradients to variables.

        Args:
Q
qiaolongfei 已提交
501
          parameters_and_grads(list(tuple(Variable, Variable))):
502
            a list of (variable, gradient) pair to update.
Q
Qiao Longfei 已提交
503 504

        Returns:
505
          return_op_list: a list of operators that will complete one step of
506 507 508
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
Q
Qiao Longfei 已提交
509
        """
510 511 512 513 514
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
515
        # for parameters and extend _finish_update method to add custom ops.
516

517
        # Allways called under program_guard use global block as loss block
518 519 520
        # But if current block is in control flow, append optimize op in the
        # grad block of current block

521
        global_block = framework.default_main_program().global_block()
522 523 524 525 526 527 528 529 530
        target_block = global_block
        current_block = framework.default_main_program().current_block()
        if current_block.idx != global_block.idx:
            assert current_block.backward_block_idx != -1, \
                "current block is not global_block, but it doesn't have backward block."
            target_block = framework.default_main_program().blocks[
                current_block.backward_block_idx]

        start = len(target_block.ops)
531
        self.helper = LayerHelper(self.__class__.__name__)
532
        self._update_param_device_map(parameters_and_grads, target_block)
C
chengduo 已提交
533
        self._create_accumulators(
534
            target_block,
C
chengduo 已提交
535
            [p[0] for p in parameters_and_grads if p[0].trainable])
536 537
        self._create_global_learning_rate()

M
minqiyang 已提交
538
        if framework.in_dygraph_mode():
539 540 541
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
542 543
                if param_and_grad[0].trainable is True:
                    self._append_optimize_op(target_block, param_and_grad)
544 545 546 547 548 549 550
        else:
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
                with param_and_grad[0].block.program._optimized_guard(
                        param_and_grad), name_scope("optimizer"):
                    if param_and_grad[0].trainable is True:
551 552 553 554 555
                        device = self._get_device_for_param(param_and_grad[0]
                                                            .name)
                        with device_guard(device):
                            optimize_op = self._append_optimize_op(
                                target_block, param_and_grad)
556 557 558

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
559
        self._finish_update(target_block, parameters_and_grads)
560

561 562
        end = len(target_block.ops)
        return target_block._slice_ops(start, end)
563 564

    def _process_distribute_lookuptable(self, param_grads):
Q
Qiao Longfei 已提交
565 566 567 568 569 570 571 572 573
        """
        Because distribute lookup table only support SGD optimizer for now, not support
        other optimizer and regularization, so we should find the table parameter out,
        and avoid to add regularization and other op for it, and add sgd optimize op
        for it independently.
        :param param_grads(list((Var, Var))): list of (param, grad) pair.
        :param loss: the loss variable.
        :param startup_program: the startup program
        """
574 575
        program = framework.default_main_program()
        global_block = framework.default_main_program().global_block()
Q
Qiao Longfei 已提交
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
        table_name = find_distributed_lookup_table(program)
        table_param = None
        table_grad = None
        new_param_grads = []
        for p, g in param_grads:
            if p.name == table_name:
                if table_param is not None:
                    raise RuntimeError(
                        "multi dist table var found, only support one now!")
                table_param = p
                table_grad = g
            else:
                new_param_grads.append((p, g))
        sgd_op = None
        if table_param is not None:
591 592 593 594 595 596 597 598 599 600 601 602 603
            param_and_grad = [table_param, table_grad]
            with table_param.block.program._optimized_guard(param_and_grad), \
                    framework.name_scope("optimizer"):
                self._create_global_learning_rate()
                # create the optimize op
                sgd_op = global_block.append_op(
                    type='sgd',
                    inputs={
                        "Param": table_param,
                        "Grad": table_grad,
                        "LearningRate": self._create_param_lr(param_and_grad)
                    },
                    outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
604 605
        return new_param_grads, (table_param, table_grad), sgd_op

606 607 608
    def _append_dgc_ops(self, param_and_grad):
        pass

609 610 611 612 613 614 615
    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
                 callbacks=None):
        """
616
        The first part of ``minimize``, do auto-diff to append backward operations for
617 618 619
        the current program.

        Args:
620 621 622 623
            loss (Variable): ``loss`` variable to run optimizations.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
624
            parameter_list (list, optional): List of ``Variable`` or ``Variable.name`` to update
625 626
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
627
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
628 629 630
                to be updated. The default value is None.
            callbacks (list, optional): list of callable objects to run when appending backward
                operator for one parameter. The default value is None.
M
minqiyang 已提交
631

632
        Return:
633 634
            list: list of (param, grad) variable pairs, param is ``Parameter``,
                grad is the gradient value corresponding to the parameter.
M
minqiyang 已提交
635

636
        Examples:
637
            See examples in ``apply_gradients``.
638
        """
639
        act_no_grad_set = None
L
Leo Chen 已提交
640
        if framework.in_dygraph_mode():
641
            pass
L
Leo Chen 已提交
642 643
        else:
            act_no_grad_set = self._get_no_grad_set(loss, no_grad_set)
G
gongweibao 已提交
644

C
chengduo 已提交
645
        self._dtype = loss.dtype
L
lujun 已提交
646
        if framework.in_dygraph_mode():
C
chengduo 已提交
647
            params_grads = []
648
            for param in self._parameter_list:
C
chengduo 已提交
649 650
                if not param.trainable:
                    continue
651
                if param._grad_ivar() is not None:
C
chengduo 已提交
652
                    # create gradient variable
653
                    grad_var = param._grad_ivar()
C
chengduo 已提交
654
                    params_grads.append((param, grad_var))
655
        else:
C
chengduo 已提交
656 657 658 659 660
            if callbacks is None:
                callbacks = [error_clip_callback]
            else:
                assert (isinstance(callbacks, list))
            program = loss.block.program
C
chengduo 已提交
661 662 663 664
            assert len(loss.shape) == 1 and loss.shape[0] == 1, \
                "The loss.shape should be (1L,), but the current loss.shape is {}. " \
                "Maybe that you should call fluid.layers.mean to process the current loss.".format(
                    loss.shape)
C
chengduo 已提交
665 666
            with program_guard(program, startup_program):
                params_grads = append_backward(loss, parameter_list,
667
                                               act_no_grad_set, callbacks)
C
chengduo 已提交
668 669 670 671
                # Note: since we can't use all_reduce_op now,
                #  dgc_op should be the last op of one grad.
                self._append_dgc_ops(params_grads)
        return params_grads
672 673 674 675 676 677 678 679

    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.
M
minqiyang 已提交
680

681 682
        Returns:
            list: A list of operators appended to the current program.
M
minqiyang 已提交
683

684 685 686
        Examples:
            .. code-block:: python

687
                import paddle.fluid as fluid
688 689 690 691 692 693 694
                loss = network()
                optimizer = fluid.optimizer.SGD(learning_rate=0.1)
                params_grads = optimizer.backward(loss)
                # you may append operations for params_grads here
                # ...
                optimizer.apply_gradients(params_grads)
        """
695

696 697 698 699 700
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        params_grads, table_param_and_grad, table_optimize_op = \
            self._process_distribute_lookuptable(params_grads)

701 702 703 704 705
        # 'minimize(grad_clip)' or 'set_gradient_clip'
        if self._grad_clip is not None:
            params_grads = self._grad_clip(params_grads)
        else:
            params_grads = append_gradient_clip_ops(params_grads)
706 707 708 709 710 711 712 713 714 715 716 717

        # Add regularization if any
        params_grads = append_regularization_ops(params_grads,
                                                 self.regularization)

        optimize_ops = self._create_optimization_pass(params_grads)
        if table_optimize_op is not None:
            optimize_ops.append(table_optimize_op)
            params_grads.append(table_param_and_grad)

        return optimize_ops

C
chengduo 已提交
718 719 720 721 722 723 724 725 726 727 728 729
    def apply_optimize(self, loss, startup_program, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Returns:
            list: A list of operators appended to the current program.
        """
L
lujun 已提交
730
        if framework.in_dygraph_mode():
C
chengduo 已提交
731 732
            with program_guard(framework.default_main_program(),
                               framework.default_startup_program()):
733 734
                if self._grad_clip is not None:
                    params_grads = self._grad_clip(params_grads)
735 736
                params_grads = append_regularization_ops(params_grads,
                                                         self.regularization)
C
chengduo 已提交
737 738 739 740 741 742 743
                optimize_ops = self._create_optimization_pass(params_grads)
        else:
            program = loss.block.program
            with program_guard(program, startup_program):
                optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

G
gongweibao 已提交
744
    def _get_no_grad_set(self, loss, no_grad_set=None):
745
        no_grad_set = _get_no_grad_set_name(no_grad_set)
G
gongweibao 已提交
746 747 748 749 750 751 752 753
        parameters = loss.block.program.global_block().all_parameters()
        param_no_trainable = set(
            [param.name for param in parameters if param.trainable is False])
        # If the parameter is no trainable, it should not have a gradient.
        no_grad_set.update(param_no_trainable)

        return no_grad_set

754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
    @framework.dygraph_only
    def clear_gradients(self):
        """
        Clear the gradients of all optimized parameters for model.
        
        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                with fluid.dygraph.guard():
                    value = np.arange(26).reshape(2, 13).astype("float32")
                    a = fluid.dygraph.to_variable(value)
                    linear = fluid.Linear(13, 5, dtype="float32")
                    # This can be any optimizer supported by dygraph.
                    adam = fluid.optimizer.Adam(learning_rate = 0.01, 
                                                parameter_list = linear.parameters())
                    out = linear(a)
                    out.backward()
                    adam.minimize(out)
                    adam.clear_gradients()

        """
        for p in self._parameter_list:
            if p.trainable:
                p.clear_gradient()

785
    @imperative_base.no_grad
Q
Qiao Longfei 已提交
786 787
    def minimize(self,
                 loss,
788
                 startup_program=None,
Q
Qiao Longfei 已提交
789
                 parameter_list=None,
790 791
                 no_grad_set=None,
                 grad_clip=None):
792
        """
793
        Add operations to minimize ``loss`` by updating ``parameter_list``.
M
minqiyang 已提交
794

795
        Args:
796 797 798 799
            loss (Variable): A ``Variable`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
800
            parameter_list (list, optional): List of ``Variable`` or ``Variable.name`` to update
801 802
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
803
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
804 805 806 807 808
                to be updated. The default value is None.
            grad_clip (GradClipBase, optional) : Gradient clipping strategy, static
                graph mode does not need to use this argument. Currently, this argument
                only supports gradient clipping in dygraph mode. In the future, this
                argument my be adjusted. The default value is None.
Q
Qiao Longfei 已提交
809

810
        Returns:
811 812 813
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) variable pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
814 815 816
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to 
            indicate program pruning. If so, the program will be pruned by ``feed`` and 
            ``fetch_list`` before run, see details in ``Executor``.
817 818 819

        Examples:
            Please refer to the example of current Optimizer.
Q
Qiao Longfei 已提交
820
        """
C
chengduo 已提交
821
        assert isinstance(loss, Variable), "The loss should be an Variable."
822 823 824 825 826 827 828
        if grad_clip is not None:
            if not isinstance(grad_clip, GradientClipBase):
                raise TypeError(
                    "'grad_clip' should be an instance of GradientClipBase's derived class"
                )
            self._grad_clip = grad_clip

C
chengduo 已提交
829 830 831 832 833
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set)
834

C
chengduo 已提交
835 836
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)
M
minqiyang 已提交
837

Q
Qiao Longfei 已提交
838
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
839 840 841


class SGDOptimizer(Optimizer):
Q
qiaolongfei 已提交
842 843 844 845 846 847 848
    """
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

849 850 851
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
852 853 854
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
855 856 857 858
        regularization: A Regularizer, such as :ref:`api_fluid_regularizer_L2DecayRegularizer`. \
            Optional, default is None.
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
859 860 861 862

    Examples:
        .. code-block:: python

863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
                sgd_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
Qiao Longfei 已提交
888 889
    """

890 891 892 893 894
    def __init__(self,
                 learning_rate,
                 parameter_list=None,
                 regularization=None,
                 name=None):
Q
Qiao Longfei 已提交
895
        assert learning_rate is not None
Q
Qiao Longfei 已提交
896
        super(SGDOptimizer, self).__init__(
X
Xin Pan 已提交
897
            learning_rate=learning_rate,
898
            parameter_list=parameter_list,
X
Xin Pan 已提交
899 900
            regularization=regularization,
            name=name)
Q
Qiao Longfei 已提交
901 902
        self.type = "sgd"

903
    @no_grad
904
    def _append_optimize_op(self, block, param_and_grad):
905
        lr = self._create_param_lr(param_and_grad)
906
        if framework.in_dygraph_mode():
907 908 909
            core.ops.sgd(param_and_grad[0], lr, param_and_grad[1],
                         param_and_grad[0])
            return None
910

911
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
912 913 914 915 916 917
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
918
                "LearningRate": lr
Q
Qiao Longfei 已提交
919
            },
M
minqiyang 已提交
920 921
            outputs={"ParamOut": param_and_grad[0]},
            stop_gradient=True)
Q
Qiao Longfei 已提交
922 923

        return sgd_op
924 925 926


class MomentumOptimizer(Optimizer):
Q
qiaolongfei 已提交
927 928 929 930 931 932 933 934 935 936 937 938 939 940
    """

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

941
        &\quad   param = param - (gradient + mu * velocity) * learning\_rate
Q
qiaolongfei 已提交
942 943 944

        & else:

Q
qiaolongfei 已提交
945
        &\quad   param = param - learning\_rate * velocity
Q
qiaolongfei 已提交
946

947 948 949 950
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
        momentum (float): Momentum factor
951 952 953
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
954 955 956 957 958
        use_nesterov (bool, optional): Enables Nesterov momentum, default is false.
        regularization: A Regularizer, such as :ref:`api_fluid_regularizer_L2DecayRegularizer`. \
            Optional, default is None.
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
959 960 961 962

    Examples:
        .. code-block:: python

963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                moment_optimizer = fluid.optimizer.MomentumOptimizer(learning_rate=0.001, momentum=0.9)
                moment_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

988 989 990
    """
    _velocity_acc_str = "velocity"

X
Xin Pan 已提交
991 992 993
    def __init__(self,
                 learning_rate,
                 momentum,
994
                 parameter_list=None,
X
Xin Pan 已提交
995 996 997
                 use_nesterov=False,
                 regularization=None,
                 name=None):
998 999
        assert learning_rate is not None
        assert momentum is not None
Q
Qiao Longfei 已提交
1000
        super(MomentumOptimizer, self).__init__(
X
Xin Pan 已提交
1001
            learning_rate=learning_rate,
1002
            parameter_list=parameter_list,
X
Xin Pan 已提交
1003 1004
            regularization=regularization,
            name=name)
1005 1006
        self.type = "momentum"
        self._momentum = momentum
1007
        self._use_nesterov = bool(use_nesterov)
1008 1009 1010 1011 1012

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
1013
            self._add_accumulator(self._velocity_acc_str, p)
1014 1015 1016 1017 1018 1019

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
1020 1021 1022 1023 1024 1025 1026 1027
        lr = self._create_param_lr(param_and_grad)

        if framework.in_dygraph_mode():
            _, _ = core.ops.momentum(param_and_grad[0], param_and_grad[1],
                                     velocity_acc, lr, param_and_grad[0],
                                     velocity_acc, 'mu', self._momentum,
                                     'use_nesterov', self._use_nesterov)
            return None
1028

1029
        attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}
1030 1031 1032 1033
        inputs = {
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
            "Velocity": [velocity_acc],
1034
            "LearningRate": [lr]
1035 1036 1037 1038 1039 1040
        }

        outputs = {
            "ParamOut": [param_and_grad[0]],
            "VelocityOut": [velocity_acc]
        }
1041 1042 1043
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
1044 1045 1046
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
M
minqiyang 已提交
1047
            stop_gradient=True)
1048 1049

        return momentum_op
1050 1051


1052
class DGCMomentumOptimizer(Optimizer):
1053
    """
1054
    DGC (Deep Gradient Compression) Momentum Optimizer. Original paper is https://arxiv.org/abs/1712.01887
1055

G
gongweibao 已提交
1056
    DGC reduces the communication bandwidth by sending only the important gradients (sparse update):\
1057 1058
        only gradients larger than a threshold are transmitted.

G
gongweibao 已提交
1059
    To avoid losing information, DGC accumulates the rest of the gradients locally.
1060 1061 1062

    Eventually, these gradients become large enough to be transmitted.

1063
    Thus, DGC sends the large gradients immediately but eventually sends all of the gradients over time.
1064

G
gongweibao 已提交
1065
    To ensure no loss of accuracy, DGC employs momentum correction and local gradient clipping on top of the gradient sparsification to maintain model performance.
1066 1067 1068 1069

    DGC also uses momentum factor masking and warmup training to overcome the staleness problem caused by reduced communication.

    This optimizer will do two things:
1070

1071 1072
        1. Compress the gradient by get TopK import value from tensor \
            and use it for allreduce to reduce network bandwidth.
1073

1074
        2. Call momentum to optimize the cost.
1075 1076

    Args:
1077 1078
        learning_rate (float|Variable): The learning rate used to update parameters. \
            It can be a float value or a Variable with one float value as a data element.
1079
        momentum (float): Momentum factor.
G
gongweibao 已提交
1080
        rampup_begin_step (int): The beginning step from which gradient compression is implemented.
1081 1082 1083 1084 1085 1086 1087
        rampup_step (int): Time steps used in sparsity warm-up periods. Default is 1.
            For example, if the sparsity is [0.75, 0.9375, 0.984375, 0.996, 0.999], and the rampup_step is 100, \
                it will use 0.75 at 0~19 steps, and 0.9375 at 20~39 steps, and so on. \
                And when reach sparsity array ends, it will use 0.999 then and after.
        sparsity (list[float]): Get top important element from gradient tensor, the ratio is (1 - current sparsity). \
            Default is [0.999]. For example, if the sparsity is [0.99, 0.999], \
                the top [1%, 0.1%] important element will be transmitted.
1088 1089 1090
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1091 1092 1093 1094 1095 1096 1097
        use_nesterov (bool): Enables Nesterov momentum. True means use Nesterov. Default is False.
        local_grad_clip_norm (float, optional): Local gradient clip norm value. Optional, default is None, represent no need clip.
        num_trainers (int, optional): The number of training nodes. Optional, default is None.
        regularization (WeightDecayRegularizer, optional): A Regularizer, such as \
            :ref:`api_fluid_regularizer_L2DecayRegularizer`. Optional, default is None.
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
1098 1099 1100 1101

    Examples:
        .. code-block:: python

1102
            import paddle.fluid as fluid
1103
            optimizer = fluid.optimizer.DGCMomentumOptimizer(
G
gongweibao 已提交
1104 1105 1106 1107 1108
                        learning_rate=0.0001,
                        momentum=0.9,
                        rampup_step=1000,
                        rampup_begin_step=1252,
                        sparsity=[0.999, 0.999])
1109 1110

    """
1111 1112
    _u_velocity_acc_str = "_dgc_u_"
    _v_velocity_acc_str = "_dgc_v_"
1113 1114 1115 1116 1117 1118 1119

    def __init__(self,
                 learning_rate,
                 momentum,
                 rampup_begin_step,
                 rampup_step=1,
                 sparsity=[0.999],
1120
                 parameter_list=None,
1121 1122 1123 1124 1125
                 use_nesterov=False,
                 local_grad_clip_norm=None,
                 num_trainers=None,
                 regularization=None,
                 name=None):
Z
zhongpu 已提交
1126 1127
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support DGCMomentumOptimizer.")
1128 1129 1130 1131

        assert core.is_compiled_with_cuda(), \
            "Paddle is not compiled with CUDA. DGC is only support GPU for now."

1132 1133 1134 1135
        assert learning_rate is not None
        assert momentum is not None
        super(DGCMomentumOptimizer, self).__init__(
            learning_rate=learning_rate,
1136
            parameter_list=parameter_list,
1137 1138 1139 1140 1141
            regularization=regularization,
            name=name)
        self.type = "dgc_momentum"
        self._momentum = momentum
        self._use_nesterov = bool(use_nesterov)
1142

1143
        assert rampup_begin_step >= 0, "rampup_begin_step must >= 0"
1144
        self._rampup_begin_step = rampup_begin_step
1145 1146
        self._rampup_step = rampup_step
        self._sparsity = sparsity
1147

1148
        self._rampup_begin_step_var = None
1149
        self._global_step_var = None
1150

1151 1152 1153 1154 1155 1156 1157 1158 1159
        self._local_grad_clip_norm = None
        self._clip_norm = None
        if local_grad_clip_norm is not None:
            assert isinstance(num_trainers, int)
            assert isinstance(local_grad_clip_norm, float)
            assert num_trainers > 0

            self._local_grad_clip_norm = local_grad_clip_norm
            self._num_trainers = num_trainers
1160
            self._clip_norm = local_grad_clip_norm * (num_trainers**-0.5)
1161

1162 1163
        self.regular_type, self.regular_coeff = self._get_regularization_param(
            self.regularization)
1164
        self._grad_clip = None
1165

1166 1167 1168
    def _get_regularization_param(self, regularization):
        regular_type = 0
        regular_coeff = 0.0
1169

1170 1171
        if regularization is not None:
            regular_coeff = regularization._regularization_coeff
1172
            from .regularizer import L1Decay, L2Decay
1173 1174 1175 1176
            if isinstance(regularization, L1Decay):
                regular_type = 1
            elif isinstance(regularization, L2Decay):
                regular_type = 2
1177 1178
            else:
                assert False, 'regularization must be None|L1Decay|L2Deacy'
1179
        return regular_type, regular_coeff
1180

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
    def _is_use_dgc(self, param_var, grad_var):
        var_numel = abs(reduce(lambda x, y: x * y, param_var.shape))
        if var_numel < 16384 or \
           param_var.type == core.VarDesc.VarType.SELECTED_ROWS  or \
           grad_var.type == core.VarDesc.VarType.SELECTED_ROWS  or  \
               param_var.dtype != core.VarDesc.VarType.FP32 :
            return False
        return True

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
        velocity_acc = self._get_accumulator(self._u_velocity_acc_str,
                                             param_and_grad[0])
        assert velocity_acc is not None

        inputs = {
            "Param": param_and_grad[0],
            "Grad": param_and_grad[1],
            "Velocity": velocity_acc,
            "LearningRate": self._create_param_lr(param_and_grad),
        }
        outputs = {
            "ParamOut": param_and_grad[0],
            "VelocityOut": velocity_acc,
        }
        attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}
1207 1208

        if not self._is_use_dgc(param_and_grad[0], param_and_grad[1]):
1209 1210 1211
            type = "momentum"
        else:
            type = "dgc_momentum"
1212 1213 1214 1215 1216
            inputs.update({
                "current_step": self._global_step_var,
                "nranks": self._nranks_var
            })
            outputs.update({'Grad_out': param_and_grad[1]})
1217
            attrs.update({"rampup_begin_step": float(self._rampup_begin_step)})
1218 1219 1220

        # create the dgc momentum optimize op
        dgc_momentum_op = block.append_op(
1221 1222 1223 1224
            type=type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
1225 1226 1227
            stop_gradient=True)
        return dgc_momentum_op

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
    def _add_auto_increment_var(self, counter_name, begin, step=1):
        helper = LayerHelper('global_step_counter')
        counter, is_new_var = helper.create_or_get_global_variable(
            name=counter_name, dtype='float32', shape=[1], persistable=True)
        if is_new_var:
            helper.set_variable_initializer(
                counter,
                initializer=Constant(
                    value=float(begin - 1), force_cpu=True))
            helper.main_program.global_block()._prepend_op(
                type='increment',
                inputs={'X': [counter]},
                outputs={'Out': [counter]},
                attrs={'step': float(step)},
                stop_gradient=True)
            counter.stop_gradient = True

        return counter

1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
    def _add_nranks_var(self, name, value=-1):
        helper = LayerHelper('global_step_counter')
        counter, is_new_var = helper.create_or_get_global_variable(
            name=name, dtype='float32', shape=[1], persistable=True)
        if is_new_var:
            helper.set_variable_initializer(
                counter,
                initializer=Constant(
                    value=float(value), force_cpu=True))
            counter.stop_gradient = True

        return counter

1260 1261 1262 1263 1264 1265
    def _append_dgc_ops(self, param_and_grads):
        main_program = default_main_program()
        main_program._enable_dgc = True

        # step counter
        self._global_step_var = self._add_auto_increment_var(
G
gongweibao 已提交
1266
            counter_name=core.dgc.kDGCCounterName(), begin=0)
1267

1268 1269 1270
        self._nranks_var = self._add_nranks_var(
            name=core.dgc.kDGCNRanksName(), value=-1)

1271 1272 1273 1274 1275
        # rampup begin step var for all_reduce_op_handle
        self._rampup_begin_step_var = tensor.create_global_var(
            shape=[1],
            dtype=core.VarDesc.VarType.FP32,
            persistable=True,
G
gongweibao 已提交
1276
            name=core.dgc.kDGCRampUpBeginStepName(),
1277 1278 1279
            value=self._rampup_begin_step * 1.0,
            force_cpu=True)

1280 1281
        self.helper = LayerHelper(self.__class__.__name__)

1282
        for param_var, grad_var in param_and_grads:
1283 1284 1285
            # reuse velocity in dgc_op and dgc_momentum_op
            u_var = self._add_accumulator(self._u_velocity_acc_str, param_var)

1286
            if not self._is_use_dgc(param_var, grad_var):
1287 1288
                continue

1289
            v_var = self._add_accumulator(self._v_velocity_acc_str, param_var)
1290 1291 1292 1293 1294

            k_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
G
gongweibao 已提交
1295
                name=param_var.name + core.dgc.kDGCKName(),
1296 1297 1298 1299 1300 1301 1302
                value=0.0,
                force_cpu=True)

            encoded_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
G
gongweibao 已提交
1303
                name=param_var.name + core.dgc.kDGCEncodedName(),
1304 1305 1306
                value=0.0,
                force_cpu=False)

1307 1308 1309 1310 1311 1312 1313 1314
            gather_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
                name=param_var.name + core.dgc.kDGCGatherName(),
                value=0.0,
                force_cpu=False)

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
            # del back oprolevarname
            op_maker = core.op_proto_and_checker_maker
            backward = core.op_proto_and_checker_maker.OpRole.Backward
            for op in main_program.global_block().ops:
                if not self._is_the_backward_op(op):
                    continue

                var_attr = op.all_attrs()[op_maker.kOpRoleVarAttrName()]
                if param_var.name not in var_attr:
                    continue

                var_attr.remove(param_var.name)
                var_attr.remove(grad_var.name)
                if len(var_attr) > 1:
                    op._set_attr(op_maker.kOpRoleVarAttrName(), var_attr)
                else:
                    op._remove_attr(op_maker.kOpRoleVarAttrName())

            clip_var = grad_var
            if self._local_grad_clip_norm is not None:
                clip_var = self._append_clip_norm(grad_var, self._clip_norm)
            self._dgc_op(param_var, clip_var, grad_var, u_var, v_var, k_var,
1337
                         encoded_var, gather_var)
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352

    def _is_the_backward_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        if op_maker.kOpRoleVarAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(backward):
            return True
        return False

    def _clip_by_norm(self, x, max_norm, name=None):
        args = {'x': x, 'max_norm': max_norm, 'name': name}

        helper = LayerHelper("dgc_clip_by_norm_op", **args)

        if name is None:
1353 1354
            name = unique_name.generate_with_ignorable_key(".".join(
                [helper.name, 'tmp']))
1355 1356 1357 1358 1359

        out = helper.create_variable(
            type=x.type, name=name, dtype=x.dtype, persistable=False)

        helper.append_op(
G
gongweibao 已提交
1360
            type="dgc_clip_by_norm",
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
            inputs={"X": x,
                    "current_step": self._global_step_var},
            attrs={
                "max_norm": max_norm,
                "rampup_begin_step": float(self._rampup_begin_step)
            },
            outputs={"Out": out})
        return out

    def _append_clip_norm(self, grad_var, clip_norm):
        with grad_var.block.program._backward_role_guard():
            return self._clip_by_norm(
G
gongweibao 已提交
1373
                x=grad_var, max_norm=clip_norm, name=grad_var.name)
1374 1375

    def _dgc_op(self, param_var, clip_var, grad_var, u_var, v_var, k_var,
1376
                encoded_var, gather_var):
1377 1378
        block = framework.default_main_program().global_block()
        op_maker = core.op_proto_and_checker_maker
1379

1380 1381 1382 1383 1384 1385 1386
        regular_type = self.regular_type
        regular_coeff = self.regular_coeff
        # The regularizer of the Parameters have higher priority
        if param_var.regularizer is not None:
            regular_type, regular_coeff = self._get_regularization_param(
                param_var.regularizer)

1387 1388 1389 1390 1391 1392
        dgc_op = block.append_op(
            type="dgc",
            inputs={
                "U": u_var,
                "V": v_var,
                "Grad": clip_var,
1393
                "Param": param_var,
1394 1395
                "current_step": self._global_step_var,
                "nranks": self._nranks_var,
1396 1397 1398 1399 1400 1401
            },
            outputs={
                "U_out": u_var,
                "V_out": v_var,
                "EncodeGrad": encoded_var,
                "k": k_var,
1402 1403
                "Grad_out": grad_var,
                "GatherBuff": gather_var,
1404 1405 1406 1407 1408 1409
            },
            attrs={
                "m": self._momentum,
                "sparsity": self._sparsity,
                "use_nesterov": self._use_nesterov,
                "rampup_begin_step": float(self._rampup_begin_step),
1410
                "rampup_step": float(self._rampup_step),
1411 1412
                "regular_coeff": float(regular_coeff),
                "regular_type": int(regular_type),
1413 1414 1415 1416 1417 1418 1419 1420
            },
            stop_gradient=True)

        backward = op_maker.OpRole.Backward
        dgc_op._set_attr(op_maker.kOpRoleAttrName(), backward)
        dgc_op._set_attr(op_maker.kOpRoleVarAttrName(),
                         [param_var.name, grad_var.name])

1421
    @imperative_base.no_grad
1422 1423 1424 1425 1426 1427 1428
    def apply_gradients(self, params_grads):
        params_grads = sorted(params_grads, key=lambda x: x[0].name)
        params_grads, table_param_and_grad, table_optimize_op = \
            self._process_distribute_lookuptable(params_grads)

        not_dgc_params_grads = []
        dgc_params_grads = []
1429
        # DGC clip and regularization in optimizer.backward
1430 1431 1432 1433 1434 1435
        for param, grad in params_grads:
            if not self._is_use_dgc(param, grad):
                not_dgc_params_grads.append((param, grad))
            else:
                dgc_params_grads.append((param, grad))

1436 1437 1438 1439 1440 1441
        # 'minimize(grad_clip)' or 'set_gradient_clip'
        if self._grad_clip is not None:
            not_dgc_params_grads = self._grad_clip(not_dgc_params_grads)
        else:
            not_dgc_params_grads = append_gradient_clip_ops(
                not_dgc_params_grads)
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455

        not_dgc_params_grads = append_regularization_ops(not_dgc_params_grads,
                                                         self.regularization)

        params_grads = not_dgc_params_grads + dgc_params_grads
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        optimize_ops = self._create_optimization_pass(params_grads)
        if table_optimize_op is not None:
            optimize_ops.append(table_optimize_op)
            params_grads.append(table_param_and_grad)

        return optimize_ops

1456

1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
class LarsMomentumOptimizer(Optimizer):
    """
    Momentum optimizer with LARS support

    The update equations are as follows:

    .. math::

        & local\_learning\_rate = learning\_rate * lars\_coeff * \\
          \\frac{||param||}{||gradient|| + lars\_weight\_decay * ||param||}

        & velocity = mu * velocity + local\_learning\_rate * (gradient + lars\_weight\_decay * param)

        & param = param - velocity

1472 1473 1474 1475 1476 1477
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element. \
            momentum (float): momentum factor
        lars_coeff (float): Defines how much we trust the layer to change its weights.
        lars_weight_decay (float): Weight decay coefficient for decaying using LARS.
1478 1479 1480
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1481 1482 1483 1484
        regularization: A Regularizer, such as :ref:`api_fluid_regularizer_L2DecayRegularizer`.
            Optional, default is None.
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
1485 1486 1487 1488

    Examples:
        .. code-block:: python

1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
            import paddle.fluid as fluid
            import numpy as np

            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
            out = fluid.layers.fc(inp, size=3)
            out = fluid.layers.reduce_sum(out)
            optimizer = fluid.optimizer.LarsMomentumOptimizer(learning_rate=0.001, momentum=0.9)
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
1505 1506 1507 1508 1509 1510 1511 1512
    """
    _velocity_acc_str = "velocity"

    def __init__(self,
                 learning_rate,
                 momentum,
                 lars_coeff=0.001,
                 lars_weight_decay=0.0005,
1513
                 parameter_list=None,
1514 1515 1516 1517 1518 1519
                 regularization=None,
                 name=None):
        assert learning_rate is not None
        assert momentum is not None
        super(LarsMomentumOptimizer, self).__init__(
            learning_rate=learning_rate,
1520
            parameter_list=parameter_list,
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
            regularization=regularization,
            name=name)
        self.type = "lars_momentum"
        self._momentum = momentum
        self._lars_coeff = float(lars_coeff)
        self._lars_weight_decay = float(lars_weight_decay)

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._velocity_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
            attrs={
                "mu": self._momentum,
                "lars_coeff": self._lars_coeff,
                "lars_weight_decay": self._lars_weight_decay
M
minqiyang 已提交
1556 1557
            },
            stop_gradient=True)
1558 1559 1560 1561

        return momentum_op


1562
class AdagradOptimizer(Optimizer):
Q
qiaolongfei 已提交
1563
    """
1564 1565
    The Adaptive Gradient optimizer (Adagrad for short) can adaptively assign
    different learning rates to individual parameters.
Q
qiaolongfei 已提交
1566

1567
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
1568 1569 1570 1571 1572 1573 1574

    .. math::

        moment\_out &= moment + grad * grad

        param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

1575 1576 1577 1578 1579 1580
    Related paper: `Adaptive Subgradient Methods for Online Learning and
    Stochastic Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have the ``epsilon`` attribute. It is added here
    in our implementation as also proposed `Per-parameter adaptive learning rate
    methods <http://cs231n.github.io/neural-networks-3/#ada>`_
Q
qiaolongfei 已提交
1581 1582 1583
    for numerical stability to avoid the division by zero error.

    Args:
1584 1585 1586 1587
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
1588 1589 1590
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1591 1592 1593 1594 1595 1596 1597
        regularization (WeightDecayRegularizer, optional): A ``Regularizer``, such as
             :ref:`api_fluid_regularizer_L2DecayRegularizer`. The default value is None.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        initial_accumulator_value (float, optional): Initial value for moment accumulator.
            The default value is 0.0.
Q
qiaolongfei 已提交
1598 1599 1600 1601

    Examples:
        .. code-block:: python

1602
            import numpy as np
1603
            import paddle.fluid as fluid
1604 1605

            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
1606
            inp = fluid.data(name="inp", shape=[2, 2])
1607 1608
            out = fluid.layers.fc(inp, size=3)
            out = fluid.layers.reduce_sum(out)
1609
            optimizer = fluid.optimizer.AdagradOptimizer(learning_rate=0.2)
1610 1611 1612 1613 1614 1615 1616
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
1617 1618 1619
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
1620 1621 1622
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
1623
                 parameter_list=None,
X
Xin Pan 已提交
1624
                 regularization=None,
1625
                 name=None,
X
xuezhong 已提交
1626
                 initial_accumulator_value=0.0):
1627 1628
        assert learning_rate is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
1629
        super(AdagradOptimizer, self).__init__(
X
Xin Pan 已提交
1630
            learning_rate=learning_rate,
1631
            parameter_list=parameter_list,
X
Xin Pan 已提交
1632 1633
            regularization=regularization,
            name=name)
1634 1635
        self.type = "adagrad"
        self._epsilon = epsilon
1636
        self.initial_accumulator_value = initial_accumulator_value
1637 1638 1639 1640 1641

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Z
zhongpu 已提交
1642 1643 1644 1645
            self._add_accumulator(
                self._moment_acc_str,
                p,
                fill_value=self.initial_accumulator_value)
1646 1647 1648 1649 1650 1651

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])
1652
        # Create the adagrad optimizer op
1653 1654 1655 1656 1657 1658
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
1659
                "LearningRate": self._create_param_lr(param_and_grad)
1660 1661 1662
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
M
minqiyang 已提交
1663 1664
            attrs={"epsilon": self._epsilon},
            stop_gradient=True)
1665 1666

        return adagrad_op
1667 1668 1669


class AdamOptimizer(Optimizer):
Q
qiaolongfei 已提交
1670
    """
T
tianshuo78520a 已提交
1671
    The Adam optimizer uses an optimization described at the end
1672 1673 1674 1675 1676
    of section 2 of `Adam paper <https://arxiv.org/abs/1412.6980>`_ ,
    it can dynamically adjusts the learning rate of each parameter using
    the 1st moment estimates and the 2nd moment estimates of the gradient.
    
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad

        moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
                          \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}

1691 1692
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_

Q
qiaolongfei 已提交
1693
    Args:
1694 1695
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
1696 1697
        beta1 (float|Variable, optional): The exponential decay rate for the 1st moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
1698
            The default value is 0.9.
1699 1700
        beta2 (float|Variable, optional): The exponential decay rate for the 2nd moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
1701 1702 1703
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
1704 1705 1706
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
        regularization (WeightDecayRegularizer, optional): A ``Regularizer``, such as
             :ref:`api_fluid_regularizer_L2DecayRegularizer`. The default value is None.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        lazy_mode (bool, optional): The official Adam algorithm has two moving-average accumulators.
            The accumulators are updated at every step. Every element of the two moving-average
            is updated in both dense mode and sparse mode. If the size of parameter is very large,
            then the update may be very slow. The lazy mode only update the element that has
            gradient in current mini-batch, so it will be much more faster. But this mode has
            different semantics with the original Adam algorithm and may lead to different result.
            The default value is False.
Q
qiaolongfei 已提交
1719 1720 1721 1722

    Examples:
        .. code-block:: python

1723 1724 1725 1726 1727 1728
            import paddle
            import paddle.fluid as fluid

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
1729 1730
                x = fluid.data(name='x', shape=[None, 13], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                adam_optimizer = fluid.optimizer.AdamOptimizer(0.01)
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
Q
qiaolongfei 已提交
1746

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
        .. code-block:: python

            # Adam with beta1/beta2 as Variable
            import paddle
            import paddle.fluid as fluid
            import paddle.fluid.layers.learning_rate_scheduler as lr_scheduler

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.data(name='x', shape=[None, 13], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                # define beta decay variable
1764
                def get_decayed_betas(beta1_init, beta2_init, decay_steps, decay_rate):
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
                    global_step = lr_scheduler._decay_step_counter()

                    beta1 = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(beta1_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta1")
                    beta2 = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(beta2_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta2")

                    div_res = global_step / decay_steps
                    decayed_beta1 = beta1_init * (decay_rate**div_res)
                    decayed_beta2 = beta2_init * (decay_rate**div_res)
                    fluid.layers.assign(decayed_beta1, beta1)
                    fluid.layers.assign(decayed_beta2, beta2)

                    return beta1, beta2

                beta1, beta2 = get_decayed_betas(0.9, 0.99, 1e5, 0.9)
                adam_optimizer = fluid.optimizer.AdamOptimizer(
                                                    learning_rate=0.01,
1793
                                                    beta1=beta1,
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
                                                    beta2=beta2)
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
1805 1806 1807
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Q
qiaolongfei 已提交
1808 1809
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"
1810 1811 1812 1813 1814

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
1815
                 epsilon=1e-8,
1816
                 parameter_list=None,
X
Xin Pan 已提交
1817
                 regularization=None,
Q
Qiao Longfei 已提交
1818
                 name=None,
Q
Qiao Longfei 已提交
1819
                 lazy_mode=False):
1820 1821 1822 1823
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
1824
        super(AdamOptimizer, self).__init__(
X
Xin Pan 已提交
1825
            learning_rate=learning_rate,
1826
            parameter_list=parameter_list,
X
Xin Pan 已提交
1827 1828
            regularization=regularization,
            name=name)
1829 1830 1831 1832
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
Q
Qiao Longfei 已提交
1833
        self._lazy_mode = lazy_mode
1834 1835 1836 1837 1838 1839

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
1840 1841
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
Q
qiaolongfei 已提交
1842 1843 1844
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
1845 1846
                fill_value=0.9 if isinstance(self._beta1, Variable) \
                        else self._beta1,
1847
                shape=[1],
1848
                type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
Q
qiaolongfei 已提交
1849 1850 1851
            self._add_accumulator(
                name=self._beta2_pow_acc_str,
                param=p,
1852 1853
                fill_value=0.999 if isinstance(self._beta2, Variable) \
                        else self._beta2,
1854
                shape=[1],
1855
                type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
1856 1857 1858 1859 1860 1861 1862 1863

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
Q
qiaolongfei 已提交
1864 1865 1866 1867
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])
1868
        lr = self._create_param_lr(param_and_grad)
1869
        # create the adam optimize op
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884

        if framework.in_dygraph_mode():
            _beta1 = self._beta1 if not isinstance(
                self._beta1, Variable) else self._beta1.numpy().item(0)
            _beta2 = self._beta2 if not isinstance(
                self._beta2, Variable) else self._beta2.numpy().item(0)
            _, _, _, _, _ = core.ops.adam(
                param_and_grad[0], param_and_grad[1], lr, moment1, moment2,
                beta1_pow_acc, beta2_pow_acc, param_and_grad[0], moment1,
                moment2, beta1_pow_acc, beta2_pow_acc, 'epsilon', self._epsilon,
                'lazy_mode', self._lazy_mode, 'min_row_size_to_use_multithread',
                1000, 'beta1', _beta1, 'beta2', _beta2)

            return None

1885
        inputs = {
1886 1887
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
1888
            "LearningRate": [lr],
1889 1890 1891 1892
            "Moment1": [moment1],
            "Moment2": [moment2],
            "Beta1Pow": [beta1_pow_acc],
            "Beta2Pow": [beta2_pow_acc]
1893 1894
        }
        outputs = {
1895 1896 1897 1898 1899
            "ParamOut": [param_and_grad[0]],
            "Moment1Out": [moment1],
            "Moment2Out": [moment2],
            "Beta1PowOut": [beta1_pow_acc],
            "Beta2PowOut": [beta2_pow_acc],
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
        }
        attrs = {
            "epsilon": self._epsilon,
            "lazy_mode": self._lazy_mode,
            "min_row_size_to_use_multithread": 1000
        }

        if isinstance(self._beta1, Variable):
            inputs['Beta1Tensor'] = self._beta1
        else:
            attrs['beta1'] = self._beta1
        if isinstance(self._beta2, Variable):
            inputs['Beta2Tensor'] = self._beta2
        else:
            attrs['beta2'] = self._beta2

1916 1917
        adam_op = block.append_op(
            type=self.type,
1918 1919 1920
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
M
minqiyang 已提交
1921
            stop_gradient=True)
1922 1923 1924

        return adam_op

1925 1926

class AdamaxOptimizer(Optimizer):
Q
qiaolongfei 已提交
1927
    """
1928 1929 1930 1931
    The Adamax optimizer is implemented based on the Adamax Optimization 
    in Section 7 of `Adam paper <https://arxiv.org/abs/1412.6980>`_.
    The Adamax algorithm is a variant of the Adam algorithm based on the infinite norm,
    which makes the learning rate update algorithm more stable and simple.
Q
qiaolongfei 已提交
1932

1933
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946

    .. math::

        t & = t + 1

        moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad

        inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)

        learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}

1947
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_
Q
qiaolongfei 已提交
1948

1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
    The original paper does not have an ``epsilon`` attribute,
    it is added here for numerical stability to prevent the division by 0 error.

    Args:
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            The default value is 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
1961 1962 1963
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1964 1965 1966 1967 1968 1969 1970 1971
        regularization (WeightDecayRegularizer, optional): A ``Regularizer``, such as
             :ref:`api_fluid_regularizer_L2DecayRegularizer`. The default value is None.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, AdamaxOptimizer doesn't support sparse parameter optimization.**
Q
qiaolongfei 已提交
1972

1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
1986
              data = fluid.data(name='X', shape=[None, 1], dtype='float32')
1987 1988
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
1989
              adam = fluid.optimizer.AdamaxOptimizer(learning_rate=0.2)
1990 1991 1992 1993 1994 1995 1996 1997 1998
              adam.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])
1999 2000 2001
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
Q
qiaolongfei 已提交
2002
    _beta1_pow_acc_str = "beta1_pow_acc"
2003 2004 2005 2006 2007

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
2008
                 epsilon=1e-8,
2009
                 parameter_list=None,
X
Xin Pan 已提交
2010 2011
                 regularization=None,
                 name=None):
2012 2013 2014 2015
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
2016
        super(AdamaxOptimizer, self).__init__(
X
Xin Pan 已提交
2017
            learning_rate=learning_rate,
2018
            parameter_list=parameter_list,
X
Xin Pan 已提交
2019 2020
            regularization=regularization,
            name=name)
2021 2022 2023 2024 2025 2026 2027 2028
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
2029 2030
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
Q
qiaolongfei 已提交
2031 2032 2033 2034 2035
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                fill_value=self._beta1,
                shape=[1])
2036 2037 2038 2039 2040 2041 2042

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
Q
qiaolongfei 已提交
2043 2044
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
2045 2046 2047 2048 2049 2050
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
2051
                "LearningRate": self._create_param_lr(param_and_grad),
2052 2053
                "Moment": moment,
                "InfNorm": inf_norm,
Q
qiaolongfei 已提交
2054
                "Beta1Pow": beta1_pow_acc
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
M
minqiyang 已提交
2065 2066
            },
            stop_gradient=True)
2067 2068 2069

        return adamax_op

2070
    def _finish_update(self, block, parameters_and_grads):
2071 2072 2073
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
2074
        for param, grad in parameters_and_grads:
C
chengduo 已提交
2075
            if grad is None or param.trainable is False:
2076
                continue
X
Xin Pan 已提交
2077 2078
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('adamx'):
2079 2080
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
2081
                block.append_op(
2082 2083 2084
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
M
minqiyang 已提交
2085 2086
                    attrs={"scale": self._beta1},
                    stop_gradient=True)
2087 2088


2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
class DpsgdOptimizer(Optimizer):
    """
    We implement the Dpsgd optimizer according to CCS16 paper -
    Deep Learning with Differential Privacy.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
              data = fluid.layers.data(name='X', shape=[1], dtype='float32')
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              optimizer = fluid.optimizer.Dpsgd(learning_rate=0.01, clip=10.0, batch_size=16.0, sigma=1.0)
              optimizer.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        clip (float): clipping threshold
        batch_size (float): batch size.
        sigma (float): for gaussian noise.
2127 2128 2129
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2130 2131 2132 2133 2134 2135 2136 2137
    Notes:
       Currently, DpsgdOptimizer doesn't support sparse parameter optimization.
    """

    def __init__(self,
                 learning_rate=0.001,
                 clip=0.9,
                 batch_size=0.999,
2138 2139
                 sigma=1e-8,
                 parameter_list=None):
2140 2141 2142 2143
        assert learning_rate is not None
        assert clip is not None
        assert batch_size is not None
        assert sigma is not None
2144 2145
        super(DpsgdOptimizer, self).__init__(
            learning_rate=learning_rate, parameter_list=parameter_list)
2146 2147 2148 2149
        self.type = "dpsgd"
        self._clip = clip
        self._batch_size = batch_size
        self._sigma = sigma
Z
zhongpu 已提交
2150 2151 2152 2153 2154 2155 2156
        '''
        Note(wangzhongpu):
        This property is only used for debugging, do not need to set it!
        Dpsgd operator use time(NULL) as random seed to generate random number.
        However, during debugging, we need determinated result, so we will set self._seed to a fixed number.
        '''
        self._seed = None
2157 2158 2159 2160 2161

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        # create the dpsgd optimize op
Z
zhongpu 已提交
2162 2163 2164
        if self._seed == None:
            self._seed = 0

2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
        dpsgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0]},
            attrs={
                "clip": self._clip,
                "batch_size": self._batch_size,
Z
zhongpu 已提交
2176 2177
                "sigma": self._sigma,
                "seed": self._seed
2178 2179 2180 2181 2182 2183
            },
            stop_gradient=True)

        return dpsgd_op


2184
class DecayedAdagradOptimizer(Optimizer):
2185
    """
2186 2187 2188
    The Decayed Adagrad optimizer can be seen as an Adagrad algorithm that introduces
    the decay rate to solve the problem of a sharp drop in the learning rate
    during model training when using the AdagradOptimizer.
2189

2190
    The parameter ``param_out`` update rule with gradient ``grad``:
2191 2192 2193 2194 2195 2196 2197

    .. math::

        moment\_out & = decay * moment + (1 - decay) * grad * grad

        param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

2198 2199 2200 2201
    Related paper: `Adaptive Subgradient Methods for Online Learning and Stochastic
    Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have an ``epsilon`` attribute. It is added here for numerical
2202 2203 2204
    stability to avoid the division by zero error.

    Args:
2205 2206 2207 2208 2209
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        decay (float, optional): The decay rate. The default value is 0.95.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
2210 2211 2212
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2213 2214 2215 2216 2217 2218 2219 2220
        regularization (WeightDecayRegularizer, optional): A ``Regularizer``, such as
             :ref:`api_fluid_regularizer_L2DecayRegularizer`. The default value is None.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.**
2221 2222 2223 2224

    Examples:
        .. code-block:: python

2225 2226
            import paddle.fluid as fluid

2227 2228 2229 2230
            x = fluid.data( name='x', shape=[None, 10], dtype='float32' )
            trans = fluid.layers.fc( x, 100 )
            cost = fluid.layers.reduce_mean( trans )
            optimizer = fluid.optimizer.DecayedAdagradOptimizer(learning_rate=0.2)
2231
            optimizer.minimize(cost)
2232 2233 2234
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
2235 2236 2237 2238
    def __init__(self,
                 learning_rate,
                 decay=0.95,
                 epsilon=1.0e-6,
2239
                 parameter_list=None,
X
Xin Pan 已提交
2240 2241
                 regularization=None,
                 name=None):
2242 2243 2244 2245
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

Q
Qiao Longfei 已提交
2246
        super(DecayedAdagradOptimizer, self).__init__(
X
Xin Pan 已提交
2247
            learning_rate=learning_rate,
2248
            parameter_list=parameter_list,
X
Xin Pan 已提交
2249 2250
            regularization=regularization,
            name=name)
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
2278 2279
            attrs={"epsilon": self._epsilon,
                   "decay": self._decay},
M
minqiyang 已提交
2280
            stop_gradient=True)
2281 2282

        return decayed_adagrad_op
2283 2284


2285
class AdadeltaOptimizer(Optimizer):
2286
    """
Z
Zeng Jinle 已提交
2287
    **Notes: This API does not support sparse parameter optimization.**
Q
qiaolongfei 已提交
2288

Z
Zeng Jinle 已提交
2289
    Adadelta Optimizer. Please refer to this for details:
Z
Zeng Jinle 已提交
2290 2291 2292
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD <https://arxiv.org/abs/1212.5701>`_.

    The update is done as follows:
2293

Z
Zeng Jinle 已提交
2294 2295
    .. math::

Z
Zeng Jinle 已提交
2296
        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2
2297

Z
Zeng Jinle 已提交
2298
        learning\_rate &= \sqrt{ ( E(dx_{t-1}^2) + \\epsilon ) / ( E(g_t^2) + \\epsilon ) }
Z
Zeng Jinle 已提交
2299

Z
Zeng Jinle 已提交
2300
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\_rate)^2
2301 2302

    Args:
Z
Zeng Jinle 已提交
2303 2304 2305
        learning_rate (float|Variable): global learning rate.
        epsilon (float): a small float number for numeric stability. Default 1.0e-6.
        rho (float): a floating point value indicating the decay rate. Default 0.95.
2306 2307 2308
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
Z
Zeng Jinle 已提交
2309 2310 2311
        regularization (WeightDecayRegularizer, optional): A Regularizer, such as
                fluid.regularizer.L2DecayRegularizer. Default None, meaning that there is no
                regularization.
2312 2313 2314
        name (str, optional): The default value is None. Normally there is no need for user
                to set this property. For more information, please refer to
                :ref:`api_guide_Name` .
2315 2316 2317 2318

    Examples:
        .. code-block:: python

2319
            import paddle.fluid as fluid
Z
Zeng Jinle 已提交
2320

2321
            image = fluid.data(name='image', shape=[None, 28], dtype='float32')
Z
Zeng Jinle 已提交
2322 2323
            fc = fluid.layers.fc(image, size=10)
            cost = fluid.layers.reduce_mean(fc)
2324 2325
            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
C
chengduo 已提交
2326

Z
Zeng Jinle 已提交
2327 2328 2329 2330
            # optimizer_ops is a list of optimizer operators to update parameters
            # params_grads is a list of (param, param_grad), where param is each
            # parameter and param_grad is the gradient variable of param.
            optimizer_ops, params_grads = optimizer.minimize(cost)
2331
    """
2332

2333 2334 2335
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

X
Xin Pan 已提交
2336 2337 2338 2339
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 rho=0.95,
2340
                 parameter_list=None,
X
Xin Pan 已提交
2341 2342
                 regularization=None,
                 name=None):
2343 2344 2345 2346 2347 2348
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
2349
        super(AdadeltaOptimizer, self).__init__(
X
Xin Pan 已提交
2350
            learning_rate=learning_rate,
2351
            parameter_list=parameter_list,
X
Xin Pan 已提交
2352 2353
            regularization=regularization,
            name=name)
2354 2355 2356 2357 2358
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
2359 2360
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
2361 2362 2363 2364 2365 2366

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
2367 2368
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389

        avg_squared_grad_acc = self._get_accumulator(
            self._avg_squared_grad_acc_str, param_and_grad[0])
        avg_squared_update_acc = self._get_accumulator(
            self._avg_squared_update_acc_str, param_and_grad[0])

        # Create the adadelta optimizer op
        adadelta_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "AvgSquaredGrad": avg_squared_grad_acc,
                "AvgSquaredUpdate": avg_squared_update_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "AvgSquaredGradOut": avg_squared_grad_acc,
                "AvgSquaredUpdateOut": avg_squared_update_acc
            },
            attrs={"epsilon": self._epsilon,
M
minqiyang 已提交
2390 2391
                   "rho": self._rho},
            stop_gradient=True)
2392 2393 2394 2395

        return adadelta_op


Q
qingqing01 已提交
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
class RMSPropOptimizer(Optimizer):
    """
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

Q
qiaolongfei 已提交
2406
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
2407 2408 2409 2410

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
Q
qiaolongfei 已提交
2411
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
Q
qingqing01 已提交
2412 2413 2414 2415 2416 2417

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

Q
qiaolongfei 已提交
2418
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
2419

2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    if centered is True:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2

        g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w)

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 +
Q
qingqing01 已提交
2434 2435 2436 2437
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

Q
qiaolongfei 已提交
2438
    where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
Q
qingqing01 已提交
2439 2440 2441 2442 2443
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


2444 2445 2446
    Parameters:
        learning_rate(float): Global learning rate.
        rho(float): rho is :math: `\\rho` in equation, default is 0.95.
Q
qingqing01 已提交
2447
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
2448
            avoid division by zero, default is 1e-6.
Q
qiaolongfei 已提交
2449
        momentum(float): :math:`\\beta` in equation is the momentum term,
2450
            default is 0.0.
2451 2452 2453 2454
        centered(bool): If True, gradients are normalized by the estimated variance of
            the gradient; if False, by the uncentered second moment. Setting this to
            True may help with training, but is slightly more expensive in terms of
            computation and memory. Defaults to False.
2455 2456 2457
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2458 2459 2460 2461
        regularization: A Regularizer, such as :ref:`api_fluid_regularizer_L2DecayRegularizer`. \
            Optional, default is None.
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qingqing01 已提交
2462 2463 2464 2465 2466 2467 2468

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                rms_optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
                rms_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
qingqing01 已提交
2494 2495 2496 2497
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
2498
    _mean_grad_acc_str = "mean_grad"
Q
qingqing01 已提交
2499 2500 2501 2502 2503 2504

    def __init__(self,
                 learning_rate,
                 rho=0.95,
                 epsilon=1.0e-6,
                 momentum=0.0,
2505
                 centered=False,
2506
                 parameter_list=None,
X
Xin Pan 已提交
2507 2508
                 regularization=None,
                 name=None):
Q
qingqing01 已提交
2509
        super(RMSPropOptimizer, self).__init__(
X
Xin Pan 已提交
2510
            learning_rate=learning_rate,
2511
            parameter_list=parameter_list,
X
Xin Pan 已提交
2512 2513
            regularization=regularization,
            name=name)
Q
qingqing01 已提交
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
2527
        self._centered = centered
Q
qingqing01 已提交
2528 2529 2530 2531 2532 2533 2534 2535

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
2536
            self._add_accumulator(self._mean_grad_acc_str, p)
Q
qingqing01 已提交
2537 2538 2539 2540 2541 2542 2543 2544 2545

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        momentum_acc = self._get_accumulator(self._momentum_acc_str,
                                             param_and_grad[0])
        mean_square_acc = self._get_accumulator(self._mean_square_acc_str,
                                                param_and_grad[0])
2546 2547
        mean_grad_acc = self._get_accumulator(self._mean_grad_acc_str,
                                              param_and_grad[0])
Q
qingqing01 已提交
2548 2549 2550 2551 2552 2553 2554
        rmsprop_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": momentum_acc,
                "MeanSquare": mean_square_acc,
2555
                "MeanGrad": mean_grad_acc,
Q
qingqing01 已提交
2556 2557 2558 2559 2560
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": momentum_acc,
2561 2562
                "MeanSquareOut": mean_square_acc,
                "MeanGradOut": mean_grad_acc
Q
qingqing01 已提交
2563 2564 2565 2566
            },
            attrs={
                "epsilon": self._epsilon,
                "decay": self._rho,
2567 2568
                "momentum": self._momentum,
                "centered": self._centered
M
minqiyang 已提交
2569 2570
            },
            stop_gradient=True)
Q
qingqing01 已提交
2571 2572 2573 2574

        return rmsprop_op


Q
qiaolongfei 已提交
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
class FtrlOptimizer(Optimizer):
    """
    FTRL (Follow The Regularized Leader) Optimizer.

    The paper that proposed Follow The Regularized Leader (FTRL):
    (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

    ..  math::

        &new\_accum = squared\_accum + grad^2

        &if (lr\_power == -0.5):

        &\quad  linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}

        &else:

        &\quad   linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}


        &x = l1 * sign(linear\_accum) - linear\_accum

        &if (lr\_power == -0.5):

        &\quad   y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &else:

        &\quad   y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &squared\_accum += grad^2

2615 2616 2617 2618 2619
    Parameters:
        learning_rate (float|Variable): Global learning rate.
        l1 (float): L1 regularization strength, default is 0.0.
        l2 (float): L2 regularization strength, default is 0.0.
        lr_power (float): Learning Rate Power, default is -0.5.
2620 2621 2622
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2623 2624 2625 2626
        regularization: A Regularizer, such as :ref:`api_fluid_regularizer_L2DecayRegularizer`. \
            Optional, default is None.
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
2627 2628 2629 2630 2631 2632 2633

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                ftrl_optimizer = fluid.optimizer.Ftrl(learning_rate=0.1)
                ftrl_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
C
chengduo 已提交
2658

2659
    NOTE:
C
chengduo 已提交
2660
       Currently, FtrlOptimizer doesn't support sparse parameter optimization.
Q
qiaolongfei 已提交
2661 2662 2663 2664 2665
    """

    _squared_acc_str = "squared"
    _linear_acc_str = "linear"

X
Xin Pan 已提交
2666 2667 2668 2669 2670
    def __init__(self,
                 learning_rate,
                 l1=0.0,
                 l2=0.0,
                 lr_power=-0.5,
2671
                 parameter_list=None,
X
Xin Pan 已提交
2672 2673
                 regularization=None,
                 name=None):
Q
qiaolongfei 已提交
2674
        super(FtrlOptimizer, self).__init__(
X
Xin Pan 已提交
2675
            learning_rate=learning_rate,
2676
            parameter_list=parameter_list,
X
Xin Pan 已提交
2677 2678
            regularization=regularization,
            name=name)
Q
qiaolongfei 已提交
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")

        self.type = "ftrl"
        self._l1 = l1
        self._l2 = l2
        self._lr_power = lr_power

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._squared_acc_str, p)
            self._add_accumulator(self._linear_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        squared_acc = self._get_accumulator(self._squared_acc_str,
                                            param_and_grad[0])
        linear_acc = self._get_accumulator(self._linear_acc_str,
                                           param_and_grad[0])
        ftrl_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "SquaredAccumulator": squared_acc,
                "LinearAccumulator": linear_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "SquaredAccumOut": squared_acc,
                "LinearAccumOut": linear_acc
            },
            attrs={"l1": self._l1,
                   "l2": self._l1,
M
minqiyang 已提交
2719 2720
                   "lr_power": self._lr_power},
            stop_gradient=True)
Q
qiaolongfei 已提交
2721 2722 2723 2724

        return ftrl_op


Y
Yibing Liu 已提交
2725 2726 2727 2728 2729 2730
class LambOptimizer(AdamOptimizer):
    """
    LAMB (Layer-wise Adaptive Moments optimizer for Batching training) Optimizer.

    LAMB Optimizer is designed to scale up the batch size of training without losing 
    accuracy, which supports adaptive element-wise updating and accurate layer-wise 
Y
Yibing Liu 已提交
2731 2732
    correction. For more information, please refer to `Large Batch Optimization for 
    Deep Learning: Training BERT in 76 minutes <https://arxiv.org/abs/1904.00962>`_ .
Y
Yibing Liu 已提交
2733 2734 2735 2736 2737

    The updating of parameters follows:

    ..  math::

Y
Yibing Liu 已提交
2738
        m_t &= \\beta_1 m_{t - 1}+ (1 - \\beta_1)g_t 
Y
Yibing Liu 已提交
2739

Y
Yibing Liu 已提交
2740
        v_t &= \\beta_2 v_{t - 1}  + (1 - \\beta_2)g_t^2
Y
Yibing Liu 已提交
2741

Y
Yibing Liu 已提交
2742
        r_t &= \\frac{m_t}{\\sqrt{v_t}+\\epsilon}
Y
Yibing Liu 已提交
2743

Y
Yibing Liu 已提交
2744
        w_t &= w_{t-1} -\\eta_t \\frac{\\left \| w_{t-1}\\right \|}{\\left \| r_t + \\lambda w_{t-1}\\right \|} (r_t + \\lambda w_{t-1})
Y
Yibing Liu 已提交
2745 2746 2747 2748 2749 2750


    where :math:`m` is the 1st moment, and :math:`v` the 2nd moment, :math:`\\eta` the 
    learning rate, :math:`\\lambda` the LAMB weight decay rate.

    Args:
Y
Yibing Liu 已提交
2751 2752 2753 2754 2755 2756 2757 2758
        learning_rate (float|Variable, optional): the learning rate used to update parameters. \
            Can be a float value or a Variable with data type float32. Default 0.001.
        lamb_weight_decay (float, optional): The LAMB weight decay rate. Default 0.01.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            Default 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            Default 0.999.
        epsilon (float, optional): A small float value for numerical stability. Default 1e-6.
2759 2760 2761
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
Y
Yibing Liu 已提交
2762 2763 2764 2765 2766 2767 2768
        regularization (Regularizer|None): A Regularizer, such as
           fluid.regularizer.L1DecayRegularizer. Default None.
        exclude_from_weight_decay_fn (function|None): Exclude a parameter from weight 
            decay when **exclude_from_weight_decay_fn(parameter)** returns true. 
            Default None.
        name(str|None): For detailed information, please refer to 
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
Y
Yibing Liu 已提交
2769 2770 2771 2772 2773 2774

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid 

Y
Yibing Liu 已提交
2775
            data = fluid.data(name='x', shape=[-1, 5], dtype='float32')
Y
Yibing Liu 已提交
2776 2777 2778
            hidden = fluid.layers.fc(input=data, size=10)
            cost = fluid.layers.mean(hidden)

Y
Yibing Liu 已提交
2779 2780 2781 2782 2783
            def exclude_fn(param):
                return param.name.endswith('.b_0')

            optimizer = fluid.optimizer.Lamb(learning_rate=0.002,
                                             exclude_from_weight_decay_fn=exclude_fn)
Y
Yibing Liu 已提交
2784 2785 2786 2787
            optimizer.minimize(cost)
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Y
Yibing Liu 已提交
2788
    # these two not used in op temporarily
Y
Yibing Liu 已提交
2789 2790 2791 2792 2793 2794 2795 2796 2797
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"

    def __init__(self,
                 learning_rate=0.001,
                 lamb_weight_decay=0.01,
                 beta1=0.9,
                 beta2=0.999,
                 epsilon=1e-6,
2798
                 parameter_list=None,
Y
Yibing Liu 已提交
2799
                 regularization=None,
Y
Yibing Liu 已提交
2800
                 exclude_from_weight_decay_fn=None,
Y
Yibing Liu 已提交
2801 2802 2803 2804 2805 2806 2807 2808
                 name=None):
        assert learning_rate is not None
        assert lamb_weight_decay is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
        super(LambOptimizer, self).__init__(
            learning_rate=learning_rate,
2809
            parameter_list=parameter_list,
Y
Yibing Liu 已提交
2810 2811 2812 2813 2814 2815 2816
            regularization=regularization,
            beta1=beta1,
            beta2=beta2,
            epsilon=epsilon,
            name=name)
        self.type = "lamb"
        self._weight_decay = lamb_weight_decay
Y
Yibing Liu 已提交
2817
        self._exclude_from_weight_decay_fn = exclude_from_weight_decay_fn
Y
Yibing Liu 已提交
2818 2819 2820

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
2821
        block.program._use_lamb = True
Y
Yibing Liu 已提交
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])

Y
Yibing Liu 已提交
2832 2833 2834 2835 2836 2837
        if self._exclude_from_weight_decay_fn is not None \
            and self._exclude_from_weight_decay_fn(param_and_grad[0]):
            weight_decay = 0.0
        else:
            weight_decay = self._weight_decay

Y
Yibing Liu 已提交
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
        # create the lamb optimize op
        lamb_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": self._create_param_lr(param_and_grad),
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": beta1_pow_acc,
                "Beta2Pow": beta2_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon,
Y
Yibing Liu 已提交
2859
                "weight_decay": weight_decay
Y
Yibing Liu 已提交
2860 2861 2862 2863 2864 2865
            },
            stop_gradient=True)

        return lamb_op


2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
2879
Dpsgd = DpsgdOptimizer
2880
DecayedAdagrad = DecayedAdagradOptimizer
2881
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
2882
RMSProp = RMSPropOptimizer
Q
qiaolongfei 已提交
2883
Ftrl = FtrlOptimizer
2884
LarsMomentum = LarsMomentumOptimizer
Y
Yibing Liu 已提交
2885
Lamb = LambOptimizer
2886 2887 2888


class ModelAverage(Optimizer):
2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
    """
    The ModelAverage optimizer accumulates specific continuous historical parameters
    during training. The accumulated historical range can be controlled by the passed
    ``average_window_rate`` argument. The averaged ``Parameter`` are used in the prediction,
    which usually can improve the accuracy of the prediction.

    Accumulate the average of the ``Parameter`` in the sliding window, the result will be saved
    in a temporary variable, can be applied to the current model's ``Parameter`` by calling
    the ``apply()`` method, and the current model ``Parameter`` can be restored by calling
    the ``restore()`` method.

    The window size for calculating the average is determined by ``average_window_rate``,
    ``min_average_window``, ``max_average_window`` and the current ``Parameter`` update times (num_updates).

    When the cumulative times (num_accumulates) is greater than the specific window
    threshold (average_window), the accumulated ``Parameter`` temporary variable is set to 0.0.
    The following example will help to understand the role of these arguments:

    ::
2908

2909 2910 2911 2912 2913 2914 2915 2916 2917
        if num_accumulates >= min_average_window and num_accumulates >= min(max_average_window, num_updates * average_window_rate):
            num_accumulates = 0

    In the above conditional judgment statement, ``num_accumulates`` indicates the current
    accumulated number, which can be abstractly understood as the length of the cumulative window.
    The length of the window must be at least the length set by the ``min_average_window`` argument,
    and cannot exceed the length specified by the ``max_average_window`` argument or
    ``num_updates * average_window_rate``, where ``num_updates`` indicates the current ``Parameter``
    update times, ``average_window_rate`` is a coefficient that calculates the length of the window.
2918 2919

    Args:
2920 2921 2922 2923 2924 2925 2926 2927
        average_window_rate (float): The calculate ratio of the window length relative to ``Parameter`` update times.
        min_average_window (int, optional): the minimum size of average window length. The default value is 10000.
        max_average_window (int, optional): The maximum size of average window length. The default value is 10000.
        regularization (WeightDecayRegularizer, optional): A ``Regularizer``, such as
             :ref:`api_fluid_regularizer_L2DecayRegularizer`. The default value is None.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
2928

2929
    Examples:
Q
qiaolongfei 已提交
2930 2931 2932

      .. code-block:: python

2933 2934 2935 2936 2937 2938
        import paddle.fluid as fluid
        import numpy

        # First create the Executor.
        place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
2939

2940 2941 2942 2943
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # build net
2944
            data = fluid.data(name='X', shape=[None, 1], dtype='float32')
2945 2946 2947 2948 2949 2950 2951 2952
            hidden = fluid.layers.fc(input=data, size=10)
            loss = fluid.layers.mean(hidden)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
            optimizer.minimize(loss)

            # build ModelAverage optimizer
            model_average = fluid.optimizer.ModelAverage(0.15,
                                                         min_average_window=10000,
2953
                                                         max_average_window=12500)
2954 2955

            exe.run(startup_program)
2956 2957 2958 2959 2960
            for i in range(12500):
                x = numpy.random.random(size=(10, 1)).astype('float32')
                outs = exe.run(program=train_program,
                               feed={'X': x},
                               fetch_list=[loss.name])
2961 2962

            # apply ModelAverage
2963
            with model_average.apply(exe):
2964 2965 2966 2967
                x = numpy.random.random(size=(10, 1)).astype('float32')
                exe.run(program=train_program,
                        feed={'X': x},
                        fetch_list=[loss.name])
2968 2969 2970
    """

    def __init__(self,
W
wanghaoshuang 已提交
2971
                 average_window_rate,
2972 2973
                 min_average_window=10000,
                 max_average_window=10000,
X
Xin Pan 已提交
2974 2975
                 regularization=None,
                 name=None):
Z
zhongpu 已提交
2976 2977
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support ModelAverage.")
X
Xin Pan 已提交
2978 2979
        super(ModelAverage, self).__init__(
            0.0, regularization=regularization, name=name)
2980 2981 2982
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
2983

2984
        self.params_grads = []
2985 2986
        for param in framework.default_main_program().global_block(
        ).all_parameters():
2987
            if param.do_model_average != False:
2988
                grad = param.block.create_var(
2989 2990
                    name=unique_name.generate_with_ignorable_key(".".join(
                        [param.name, 'tmp'])),
2991 2992
                    dtype=param.dtype,
                    persistable=False,
W
wanghaoshuang 已提交
2993
                    stop_gradient=True)
2994
                self.params_grads.append((param, grad))
2995

2996
        for param, grad in self.params_grads:
2997 2998
            if grad is None:
                continue
X
Xin Pan 已提交
2999 3000
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('move_average'):
3001
                self._append_average_accumulate_op(param)
3002

3003 3004 3005 3006
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
3007
                self._add_average_apply_op(block, param_grad)
3008 3009 3010 3011 3012

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
3013
                self._add_average_restore_op(block, param_grad)
3014

3015
    def _add_average_apply_op(self, block, param_grad):
L
Luo Tao 已提交
3016 3017 3018 3019 3020 3021
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
        sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block._clone_variable(
3022
            self._get_accumulator('num_accumulates', param))
L
Luo Tao 已提交
3023
        old_num_accumulates = block._clone_variable(
3024
            self._get_accumulator('old_num_accumulates', param))
L
Luo Tao 已提交
3025
        num_updates = block._clone_variable(
3026 3027 3028 3029 3030 3031
            self._get_accumulator('num_updates', param))
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
        tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
        sum = layers.sum(x=[sum_1, sum_2, sum_3])
D
dzhwinter 已提交
3032 3033 3034 3035
        tmp = layers.cast(
            x=tmp, dtype='float32' if self._dtype == None else self._dtype)
        sum = layers.cast(
            x=sum, dtype='float32' if self._dtype == None else self._dtype)
S
sneaxiy 已提交
3036
        ops._elementwise_div(x=sum, y=tmp, out=param)
3037 3038

    def _add_average_restore_op(self, block, param_grad):
L
Luo Tao 已提交
3039 3040
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
        layers.assign(input=grad, output=param)

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1])
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1])
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1])

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
M
minqiyang 已提交
3078 3079
            },
            stop_gradient=True)
3080

S
rename  
sneaxiy 已提交
3081
    @signature_safe_contextmanager
3082
    def apply(self, executor, need_restore=True):
3083 3084
        """
        Apply the average of the cumulative ``Parameter`` to the parameters of the current model.
3085 3086

        Args:
3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
            executor(fluid.Executor): The current network executor.
            need_restore(bool): Restore flag variable, if set to True, the network will restore
                the parameters of the network to the default value, if set to False,
                it will not be restored. The default value is True.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])
3131
        """
3132 3133 3134 3135 3136 3137
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
3138 3139

    def restore(self, executor):
3140 3141
        """
        Restore ``Parameter`` values of current model.
3142 3143
        
        Args:
3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
            executor(fluid.Executor): The current network executor.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe, False):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])

                # restore Parameters
                model_average.restore(exe)
3188
        """
3189
        executor.run(self.restore_program)
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199


class ExponentialMovingAverage(object):
    """
    Compute the moving average of parameters with exponential decay.
    Given a parameter :math:`\\theta`, its exponential moving average (EMA)
    will be

    ..  math::

3200
        \\text{EMA}_0 & = 0
3201

3202 3203
	\\text{EMA}_t & = \\text{decay} * \\text{EMA}_{t-1} + (1 - \\text{decay}) * \\theta_t

Y
Yibing Liu 已提交
3204 3205 3206 3207
    The average results calculated by **update()** method will be saved in 
    temporary variables which are created and maintained by the object, and can 
    be applied to parameters of current model by calling **apply()** method. And 
    the **restore()** method is used to restore the parameters.
3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228

    **Bias correction**. All EMAs are initialized to :math:`0` and hence they will be 
    zero biased, which can be corrected by divided by a factor 
    :math:`(1 - \\text{decay}^t)` , i.e., the actual EMAs applied to parameters 
    when calling **apply()** method would be 

    ..  math::
    
        \\widehat{\\text{EMA}}_t = \\frac{\\text{EMA}_t}{1 - \\text{decay}^t}

    **Decay rate scheduling**. A large decay rate very close to 1 would result 
    in that the averages move very slowly. And a better strategy is to set a 
    relative smaller decay rate in the very beginning. The argument **thres_steps**
    allows users to pass a Variable to schedule the decay rate, in this case, 
    the actual decay rate becomes
     
    ..  math::
    
        \\min(\\text{decay}, \\frac{1 + \\text{thres_steps}}{10 + \\text{thres_steps}})

    Usually **thres_steps** can be the global training steps.
3229 3230 3231


    Args:
Y
Yibing Liu 已提交
3232 3233 3234 3235 3236 3237 3238
	decay (float, optional): The exponential decay rate, usually close to 1, such as 
            0.999, 0.9999, ... . Default 0.999.
        thres_steps (Variable|None): If not `None`, schedule the decay rate. 
            Default None.
        name (str|None): For detailed information, please refer to 
            :ref:`api_guide_Name`. Usually name is no need to set and None by 
            default.
3239 3240 3241 3242 3243


    Examples:

	.. code-block:: python
3244 3245 3246 3247 3248

	    import numpy
	    import paddle
	    import paddle.fluid as fluid

Y
Yibing Liu 已提交
3249
	    data = fluid.data(name='x', shape=[-1, 5], dtype='float32')
3250 3251 3252 3253 3254 3255 3256 3257
	    hidden = fluid.layers.fc(input=data, size=10)
	    cost = fluid.layers.mean(hidden)

	    test_program = fluid.default_main_program().clone(for_test=True)

	    optimizer = fluid.optimizer.Adam(learning_rate=0.001)
	    optimizer.minimize(cost)

3258
	    global_steps = fluid.layers.autoincreased_step_counter()
3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
	    ema = fluid.optimizer.ExponentialMovingAverage(0.999, thres_steps=global_steps)
	    ema.update()

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())

	    for pass_id in range(3):
		for batch_id in range(6):
		    data = numpy.random.random(size=(10, 5)).astype('float32')
		    exe.run(program=fluid.default_main_program(),
			feed={'x': data}, 
			fetch_list=[cost.name])

		# usage 1
		with ema.apply(exe):
		    data = numpy.random.random(size=(10, 5)).astype('float32')
		    exe.run(program=test_program,
			    feed={'x': data}, 
			    fetch_list=[hidden.name])
			    

		 # usage 2
		with ema.apply(exe, need_restore=False):
		    data = numpy.random.random(size=(10, 5)).astype('float32')
		    exe.run(program=test_program,
			    feed={'x': data}, 
			    fetch_list=[hidden.name])
		ema.restore(exe)
3288 3289
    """

3290
    def __init__(self, decay=0.999, thres_steps=None, name=None):
Z
zhongpu 已提交
3291 3292 3293
        if framework.in_dygraph_mode():
            raise Exception(
                "In dygraph, don't support ExponentialMovingAverage.")
3294
        self._decay = decay
3295
        self._thres_steps = thres_steps
3296
        self._name = name if name is not None else ''
3297 3298
        self._decay_var = self._get_ema_decay()

3299
        self._step_counter_name = "@EMA_STEP_COUNTER@"
Y
Yibing Liu 已提交
3300
        self._params_tmps = []
3301
        for param in default_main_program().global_block().all_parameters():
3302 3303 3304 3305 3306 3307 3308
            if param.do_model_average != False:
                tmp = param.block.create_var(
                    name=unique_name.generate(".".join(
                        [self._name + param.name, 'ema_tmp'])),
                    dtype=param.dtype,
                    persistable=False,
                    stop_gradient=True)
Y
Yibing Liu 已提交
3309
                self._params_tmps.append((param, tmp))
3310

Y
Yibing Liu 已提交
3311 3312
        self._ema_vars = {}
        for param, tmp in self._params_tmps:
3313 3314
            with param.block.program._optimized_guard(
                [param, tmp]), name_scope('moving_average'):
Y
Yibing Liu 已提交
3315
                self._ema_vars[param.name] = self._create_ema_vars(param)
3316 3317 3318 3319

        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
3320
            decay_pow, global_step = self._get_decay_pow(block)
Y
Yibing Liu 已提交
3321
            for param, tmp in self._params_tmps:
3322 3323
                param = block._clone_variable(param)
                tmp = block._clone_variable(tmp)
Y
Yibing Liu 已提交
3324
                ema = block._clone_variable(self._ema_vars[param.name])
3325
                layers.assign(input=param, output=tmp)
3326
                # bias correction
3327 3328 3329
                with layers.control_flow.Switch() as switch:
                    with switch.case(global_step > 0):
                        layers.assign(output=ema, input=ema / (1.0 - decay_pow))
3330 3331 3332 3333 3334
                layers.assign(input=ema, output=param)

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
Y
Yibing Liu 已提交
3335
            for param, tmp in self._params_tmps:
3336 3337 3338 3339
                tmp = block._clone_variable(tmp)
                param = block._clone_variable(param)
                layers.assign(input=tmp, output=param)

3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
    def _get_ema_decay(self):
        with default_main_program()._lr_schedule_guard():
            decay_var = layers.tensor.create_global_var(
                shape=[1],
                value=self._decay,
                dtype='float32',
                persistable=True,
                name="scheduled_ema_decay_rate")

            if self._thres_steps is not None:
                decay_t = (self._thres_steps + 1.0) / (self._thres_steps + 10.0)
                with layers.control_flow.Switch() as switch:
                    with switch.case(decay_t < self._decay):
                        layers.tensor.assign(decay_t, decay_var)
                    with switch.default():
                        layers.tensor.assign(
                            np.array(
                                [self._decay], dtype=np.float32),
                            decay_var)
        return decay_var

    def _get_decay_pow(self, block):
3362 3363 3364 3365 3366 3367 3368
        global_step = layers.create_global_var(
            name=self._step_counter_name,
            shape=[1],
            value=0,
            dtype='int64',
            persistable=True)
        global_step = layers.cast(global_step, "float32")
3369
        decay_var = block._clone_variable(self._decay_var)
3370 3371
        decay_pow_acc = layers.elementwise_pow(decay_var, global_step)
        return decay_pow_acc, global_step
3372

Y
Yibing Liu 已提交
3373
    def _create_ema_vars(self, param):
3374 3375 3376 3377 3378 3379 3380 3381 3382
        param_ema = layers.create_global_var(
            name=unique_name.generate(self._name + param.name + '_ema'),
            shape=param.shape,
            value=0.0,
            dtype=param.dtype,
            persistable=True)

        return param_ema

Y
Yibing Liu 已提交
3383 3384 3385 3386 3387
    def update(self):
        """ 
        Update Exponential Moving Average. Should only call this method in 
        train program.
        """
3388 3389
        global_step = layers.autoincreased_step_counter(
            counter_name=self._step_counter_name)
3390
        param_master_emas = []
Y
Yibing Liu 已提交
3391 3392 3393 3394
        for param, tmp in self._params_tmps:
            with param.block.program._optimized_guard(
                [param, tmp]), name_scope('moving_average'):
                param_ema = self._ema_vars[param.name]
3395
                if param.name + '.master' in self._ema_vars:
3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
                    master_ema = self._ema_vars[param.name + '.master']
                    param_master_emas.append([param_ema, master_ema])
                else:
                    ema_t = param_ema * self._decay_var + param * (
                        1 - self._decay_var)
                    layers.assign(input=ema_t, output=param_ema)

        # for fp16 params
        for param_ema, master_ema in param_master_emas:
            default_main_program().global_block().append_op(
                type="cast",
                inputs={"X": master_ema},
                outputs={"Out": param_ema},
                attrs={
                    "in_dtype": master_ema.dtype,
                    "out_dtype": param_ema.dtype
                })
Y
Yibing Liu 已提交
3413

3414 3415 3416 3417 3418 3419 3420
    @signature_safe_contextmanager
    def apply(self, executor, need_restore=True):
        """
        Apply moving average to parameters for evaluation.
        
        Args:
            executor (Executor): The Executor to execute applying.
Y
Yibing Liu 已提交
3421 3422
            need_restore (bool, optional): Whether to restore parameters after 
                applying. Default True.
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
        """
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)

    def restore(self, executor):
        """Restore parameters.
        
        Args:
            executor (Executor): The Executor to execute restoring.
        """
        executor.run(self.restore_program)
H
hutuxian 已提交
3438 3439 3440


class PipelineOptimizer(object):
3441 3442
    """
    Pipeline Optimizer
H
hutuxian 已提交
3443

T
tianshuo78520a 已提交
3444
    Train with pipeline mode. The program will be split by cut_list. 
H
hutuxian 已提交
3445 3446

    If the len of cut_list is k, then the whole program (including \
T
tianshuo78520a 已提交
3447
    backward part) will be split to 2*k-1 sections. 
H
hutuxian 已提交
3448 3449 3450 3451
    
    So the length of place_list and concurrency_list must be also 2*k-1.

    Note: Though the asynchronous mode is applied in pipeline training to speed up, \
3452
    the final performance depends on the training progress of each pipeline heavily.
H
hutuxian 已提交
3453 3454 3455

    And we will try the synchronous mode in the future.

3456
    Args:
H
hutuxian 已提交
3457 3458 3459 3460
        optimizer (Optimizer): The based optimizer, such as SGD.
        cut_list (list of Variable list): The cut variable of the main_program.
        place_list (list of Place): The place where the section will run on.
        concurrency_list (list of int): The concurrency degree.
3461 3462
        queue_size (int): Each section will consume scopes from its in-scope queue 
                        and produce scopes to out-scope queue. And this parameter 
H
hutuxian 已提交
3463 3464 3465 3466
                        specify the scope queue size. [Optional. Default: 30].
        sync_steps (int): The synchronization steps between different cards. [Optional. Default: 1].
        start_cpu_core_id (int): specify the first cpu core id. [Optional. Default:0].

3467 3468
    Examples:
        .. code-block:: python
H
hutuxian 已提交
3469

3470
            import paddle.fluid as fluid
H
hutuxian 已提交
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
            import paddle.fluid.layers as layers

            x = fluid.layers.data(name='x', shape=[1], dtype='int64', lod_level=0)
            y = fluid.layers.data(name='y', shape=[1], dtype='int64', lod_level=0)
            emb_x = layers.embedding(input=x, param_attr=fluid.ParamAttr(name="embx"), size=[10,2], is_sparse=False)
            emb_y = layers.embedding(input=y, param_attr=fluid.ParamAttr(name="emby",learning_rate=0.9), size=[10,2], is_sparse=False)
            concat = layers.concat([emb_x, emb_y], axis=1)
            fc = layers.fc(input=concat, name="fc", size=1, num_flatten_dims=1, bias_attr=False)
            loss = layers.reduce_mean(fc)
            optimizer = fluid.optimizer.SGD(learning_rate=0.5)
            optimizer = fluid.optimizer.PipelineOptimizer(optimizer,
                    cut_list=[[emb_x, emb_y], [loss]],
                    place_list=[fluid.CPUPlace(), fluid.CUDAPlace(0), fluid.CPUPlace()],
                    concurrency_list=[1, 1, 4],
                    queue_size=2,
                    sync_steps=1,
                    )
            optimizer.minimize(loss)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            filelist = [] # you should set your own filelist, e.g. filelist = ["dataA.txt"]
            dataset = fluid.DatasetFactory().create_dataset("FileInstantDataset")
            dataset.set_use_var([x,y])
            dataset.set_batch_size(batch_size)
            dataset.set_filelist(filelist)
            exe.train_from_dataset(
                        fluid.default_main_program(),
                        dataset,
                        thread=2,
                        debug=False,
                        fetch_list=[],
                        fetch_info=[],
                        print_period=1)
3505 3506
    """

H
hutuxian 已提交
3507 3508 3509 3510 3511 3512 3513 3514
    def __init__(self,
                 optimizer,
                 cut_list=None,
                 place_list=None,
                 concurrency_list=None,
                 queue_size=30,
                 sync_steps=1,
                 start_cpu_core_id=0):
Z
zhongpu 已提交
3515 3516
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support PipelineOptimizer.")
H
hutuxian 已提交
3517 3518 3519 3520 3521 3522 3523 3524 3525
        # TODO: check properties
        self._optimizer = optimizer
        self._cut_list = cut_list
        self._place_list = place_list
        self._concurrency_list = concurrency_list
        self._queue_size = queue_size
        self._sync_steps = sync_steps
        self._start_cpu_core_id = start_cpu_core_id

H
hutuxian 已提交
3526
    def _create_vars(self, block, main_program):
H
hutuxian 已提交
3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
        used_var_set = set()
        for op_idx in range(block.desc.op_size()):
            op_desc = block.desc.op(op_idx)
            vars = op_desc.input_arg_names() + op_desc.output_arg_names()
            for var in vars:
                if var in used_var_set:
                    continue
                used_var_set.add(var)
                source_var = main_program.block(0).var(str(var))
                block._clone_variable(source_var, False)

H
hutuxian 已提交
3538
    def _extract_section_opt_ops(self, ops, cut_point_name):
H
hutuxian 已提交
3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553
        """
        Extract opt ops in the given section
        """
        output_names = set(cut_point_name)
        relevant_op_flags = [True] * len(ops)
        for i, op in reversed(list(enumerate(ops))):
            if _some_in_set_(op.desc.output_arg_names(), output_names):
                for name in op.desc.input_arg_names():
                    output_names.add(name)
            else:
                relevant_op_flags[i] = False

        op_path = [ops[i] for i in range(len(ops)) if relevant_op_flags[i]]
        return op_path

H
hutuxian 已提交
3554
    def _find_input_output(self, ops, name, is_forward=True):
H
hutuxian 已提交
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568
        """
        Find the inputs or outputs of a section
        """
        all_set = set()
        part_set = set()
        for op in ops:
            if is_forward:
                part_set.update(op.desc.output_arg_names())
            else:
                part_set.update(op.desc.input_arg_names())
            all_set.update(op.desc.output_arg_names())
            all_set.update(op.desc.input_arg_names())
        return all_set - part_set

H
hutuxian 已提交
3569
    def _find_persistable_vars(self, ops, whole_parameters):
H
hutuxian 已提交
3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596
        """
        find the persistable input vars in current section
        """
        res = set()
        for op in ops:
            vars = op.desc.input_arg_names()
            for var in vars:
                if var in whole_parameters:
                    res.add(var)
        return res

    def _is_opt_role_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) & int(optimize_role) != 0:
            return True
        return False

    def _is_lr_role_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.LRSched
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
            return True
        return False

H
hutuxian 已提交
3597
    def _extract_section_ops(self, ops, cut_point_name):
H
hutuxian 已提交
3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
        """
        Extract ops in the given section 
        """
        output_names = set(cut_point_name)
        relevant_op_flags = [True] * len(ops)
        for i, op in reversed(list(enumerate(ops))):
            if not self._is_opt_role_op(op) and _some_in_set_(
                    op.desc.output_arg_names(), output_names):
                for name in op.desc.input_arg_names():
                    output_names.add(name)
            elif op.desc.type() == "print" and op.desc.input_arg_names()[
                    0] in output_names:
                continue
            else:
                relevant_op_flags[i] = False

        op_path = [ops[i] for i in range(len(ops)) if relevant_op_flags[i]]
        return op_path

H
hutuxian 已提交
3617 3618
    def _find_section_opt(self, ops, params):
        res = self._extract_section_opt_ops(ops, params)
H
hutuxian 已提交
3619 3620
        return res

H
hutuxian 已提交
3621
    def _split_program(self, main_program, cut_list):
H
hutuxian 已提交
3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641
        programs = []
        block = main_program.block(0)
        whole_parameters = [e.name for e in block.all_parameters()]
        cut_var_names = []
        cut_len = len(cut_list)
        sec_params = []
        for i, cut_vars in enumerate(cut_list[:-1]):
            cut_var_names.append([cut_var.name for cut_var in cut_vars])
        for i, cut_vars in reversed(list(enumerate(cut_list[:-1]))):
            cut_var_names.append(
                [_append_grad_suffix_(cut_var.name) for cut_var in cut_vars])
            if i == 0:
                cut_var_names[-1] += [var.name for var in cut_list[-1]]
        ops = block.ops[:]
        for i, cut_vars in enumerate(cut_var_names):
            program = {
                "program": Program(),
                "input_set": set(),
                "output_set": set()
            }
H
hutuxian 已提交
3642
            cur_ops = self._extract_section_ops(ops, cut_vars)
H
hutuxian 已提交
3643 3644 3645 3646 3647 3648
            if i == 0:
                for op in ops:
                    if self._is_lr_role_op(op):
                        cur_ops.append(op)
            #prevent inplace in/out
            program["input_set"].update(
H
hutuxian 已提交
3649
                self._find_input_output(
H
hutuxian 已提交
3650 3651 3652 3653 3654 3655
                    cur_ops, [], is_forward=True))
            for e in cur_ops:
                ops.remove(e)

            if i < cut_len:
                sec_params.append(
H
hutuxian 已提交
3656
                    self._find_persistable_vars(cur_ops, whole_parameters))
H
hutuxian 已提交
3657
            if i >= cut_len - 1:
H
hutuxian 已提交
3658 3659
                opt_ops = self._find_section_opt(
                    ops, sec_params[2 * cut_len - 2 - i])
H
hutuxian 已提交
3660 3661 3662 3663 3664 3665 3666 3667 3668 3669

                for e in opt_ops:
                    ops.remove(e)
                cur_ops += opt_ops

            op_descs = [op.desc for op in cur_ops]
            for op_desc in op_descs:
                ap_op = program["program"].block(0).desc.append_op()
                ap_op.copy_from(op_desc)
            program["input_set"].update(
H
hutuxian 已提交
3670
                self._find_input_output(
H
hutuxian 已提交
3671 3672 3673
                    cur_ops, cut_vars, is_forward=True))
            program["input_set"].update(sec_params[min(i, 2 * cut_len - 2 - i)])
            program["output_set"].update(
H
hutuxian 已提交
3674
                self._find_input_output(
H
hutuxian 已提交
3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688
                    cur_ops, cut_vars, is_forward=False))
            programs.append(program)
        program = {
            "program": Program(),
            "input_set": set(),
            "output_set": set()
        }
        op_descs = [op.desc for op in ops]
        for op_desc in op_descs:
            ap_op = program["program"].block(0).desc.append_op()
            ap_op.copy_from(op_desc)
        program["input_set"].update(
            [cut_var.name + "@GRAD" for cut_var in cut_list[0]])
        program["input_set"].update(
H
hutuxian 已提交
3689
            self._find_input_output(
H
hutuxian 已提交
3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709
                ops, [], is_forward=True))
        program["input_set"].update(sec_params[0])
        programs.append(program)
        inputs = set()
        for program in reversed(list(programs)):
            output_list = list(program["output_set"])
            for output in output_list:
                if output not in inputs:
                    program["output_set"].remove(output)
            inputs.update(program["input_set"])
        return programs

    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        self._optimizer.minimize(loss, startup_program, parameter_list,
                                 no_grad_set)
        program = loss.block.program
H
hutuxian 已提交
3710 3711 3712 3713 3714 3715 3716 3717
        if len(self._cut_list) == 0:
            program_list = []
            ptmp = {"program": program, "input_set": set(), "output_set": set()}
            program_list.append(ptmp)
        else:
            program_list = self._split_program(program, self._cut_list)
            for p in program_list:
                self._create_vars(p["program"].block(0), program)
H
hutuxian 已提交
3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737
        whole_parameters = [e.name for e in program.block(0).all_parameters()]
        param_need_sync = []
        for i, section_p in enumerate(program_list):
            if not isinstance(self._place_list[i], core.CUDAPlace):
                continue
            section_var = [e for e in section_p["program"].block(0).vars]
            for p in section_var:
                if p in whole_parameters:
                    param_need_sync.append(p)
        program._pipeline_opt = {
            "trainer": "PipelineTrainer",
            "device_worker": "Section",
            "section_program_list": program_list,
            "place_list": self._place_list,
            "concurrency_list": self._concurrency_list,
            "queue_size": self._queue_size,
            "start_cpu_core_id": self._start_cpu_core_id,
            "sync_steps": self._sync_steps,
            "param_need_sync": param_need_sync
        }
M
mapingshuo 已提交
3738 3739


M
mapingshuo 已提交
3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801
class RecomputeOptimizer(Optimizer):
    """
    Recompute Optimizer Wrapper

    Normally, a training step contains three sub-steps: first, run forward
    Operators to calculate the loss; second, run backward Operators to 
    calculate gradient of the parameters; third, apply optimization method
    to update the value of the parameters.

    In the forward computation process, all variables that are needed by 
    backward computation process will be kept in memory, which occupy a great
    amount of memory when the network becomes very deep.

    Recompute split the network to k segments. In each segment, It will 
    recompute the forward Operators, before running backward operators. It is
    very helpful for saving memory.
 
    The Variables that separate a network to segments are called as checkpoints,
    and users should set it manually. The usage is very simple:

    Args:
        optimizer (Optimizer): The optimizer that is applied to parameters.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np
            def gen_data():
                return {"x": np.random.random(size=(32, 32)).astype('float32'),
                "y": np.random.randint(2, size=(32, 1)).astype('int64')}
            def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                print(input_x)
                fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                sum_cost = fluid.layers.reduce_mean(cost)
                return sum_cost, fc_1, prediction
            input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
            input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
            cost, fc_1, pred = mlp(input_x, input_y)

            sgd = fluid.optimizer.Adam(learning_rate=0.01)
            sgd = fluid.optimizer.RecomputeOptimizer(sgd)
            sgd._set_checkpoints([fc_1, pred])
            sgd.minimize(cost)

            print("Finished optimize")
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            step = 10

            for i in range(step):
                cost_val = exe.run(feed=gen_data(),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
                print("step=%d cost=%f" % (i, cost_val[0]))

    """

    def __init__(self, optimizer):
Z
zhongpu 已提交
3802 3803
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support RecomputeOptimizer.")
M
mapingshuo 已提交
3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878
        self._optimizer = optimizer
        self._checkpoints = None

    def _set_checkpoints(self, checkpoints):
        self._checkpoints = checkpoints

    def load(self, stat_dict):
        """
        load function is not supported by Recompute Optimizer for now.
        :return: None

        Args:
            stat_dict: the dict load by load_persistable method

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.compat as cpt
                
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction
                
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
                
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
                sgd._set_checkpoints([fc_1, pred])
                try:
                    stat_dict = {}
                    sgd.load(stat_dict)
                except NotImplementedError as e:
                    print(cpt.get_exception_message(e))
        """
        raise NotImplementedError(
            "load function is not supported by Recompute Optimizer for now")

    def apply_gradients(self, params_grads):
        """
        call apply_gradients function of self._optimizer.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.fluid.framework as framework

                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction


                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")

                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
3879
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
3880 3881 3882 3883
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
3884
                    no_grad_set=None)
M
mapingshuo 已提交
3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899

                program = cost.block.program
                with framework.program_guard(program, None):
                    optimize_ops = sgd.apply_gradients(params_grads)

                print("Finished apply gradients")
        """

        return self._optimizer.apply_gradients(params_grads=params_grads)

    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
3900
                 callbacks=None):
M
mapingshuo 已提交
3901 3902 3903 3904 3905 3906 3907
        """
        call append_backward with checkpoints.

        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
3908 3909
            parameter_list (list): list of Variables or Variable.names to update.
            no_grad_set (set|None): set of Variables or Variables.names should be ignored.
M
mapingshuo 已提交
3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933
            callbacks (list|None): list of callables to run when appending backward
                operator for one parameter.
            checkpoints (list): list of Variables as checkpoints

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
    
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction
    
    
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
    
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
3934
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
3935 3936 3937 3938
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
3939
                    no_grad_set=None)
M
mapingshuo 已提交
3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954
                print("Finished backward")
        """

        if framework.in_dygraph_mode():
            raise NotImplementedError(
                "DyGraph current does not support recompute")

        self._dtype = loss.dtype
        program = loss.block.program
        with program_guard(program, startup_program):
            params_grads = append_backward(
                loss,
                parameter_list,
                no_grad_set,
                checkpoints=self._checkpoints)
3955 3956 3957
            # Note: since we can't use all_reduce_op now,
            #  dgc_op should be the last op of one grad.
            self._optimizer._append_dgc_ops(params_grads)
M
mapingshuo 已提交
3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976
        return params_grads

    def apply_optimize(self, loss, startup_program, params_grads):
        """
        call the apply_optimize function of self._optimizer
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Examples:
            .. code-block:: python
                import paddle.fluid as fluid
                
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
M
mapingshuo 已提交
3977
                    return sum_cost, fc_1, prediction                
M
mapingshuo 已提交
3978 3979 3980 3981 3982 3983 3984 3985
                
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
                
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
3986
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
3987 3988 3989 3990
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
3991
                    no_grad_set=None)
M
mapingshuo 已提交
3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007
                
                optimize_ops = sgd.apply_optimize(
                    cost, startup_program=None, params_grads=params_grads)
                
                print("Finished apply_optimize")
        """

        return self._optimizer.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)

    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
                 grad_clip=None):
4008
        assert isinstance(loss, Variable), "The loss should be an Variable."
M
mapingshuo 已提交
4009 4010 4011 4012 4013
        assert (self._checkpoints is not None
                ), "You should call _set_checkpoints first"
        if framework.in_dygraph_mode():
            raise NotImplementedError(
                "DyGraph current does not support recompute")
4014 4015 4016 4017 4018 4019
        if grad_clip is not None:
            if not isinstance(grad_clip, GradientClipBase):
                raise TypeError(
                    "'grad_clip' should be an instance of GradientClipBase's derived class"
                )
            self._optimizer._grad_clip = grad_clip
M
mapingshuo 已提交
4020 4021 4022 4023
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
4024
            no_grad_set=no_grad_set)
M
mapingshuo 已提交
4025 4026 4027 4028 4029 4030 4031

        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)

        return optimize_ops, params_grads


M
mapingshuo 已提交
4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086
class LookaheadOptimizer(object):
    """
    This implements the Lookahead optimizer of the
    paper : https://arxiv.org/abs/1907.08610.

    Lookahead keeps two sets of params: the fast_params and
    the slow_params. inner_optimizer update fast_params every 
    training step. Lookahead updates the slow_params and fast_params 
    every k training steps as follows:

    .. math::
        
        slow\_param_t &= slow\_param_{t-1} + \\alpha * (fast\_param_{t-1} - slow\_param_{t-1})
	
	fast\_param_t &=  slow\_param_t

    Args:
        inner_optimizer (Optimizer): The optimizer that update fast params step by step. 
        alpha (float): The learning rate of Lookahead.
        k (int): The slow params is updated every k steps.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import numpy as np

	    x = fluid.layers.data(name='x', shape=[2], dtype='float32')
	    label = fluid.layers.data(name="label", shape=[1], dtype="int64")
	    y = fluid.layers.fc(input=[x], size=2, act="softmax")
	    loss = fluid.layers.cross_entropy(input=y, label=label)
	    loss = fluid.layers.mean(x=loss)
	    sgd = fluid.optimizer.SGD(learning_rate=0.01)
	    optimizer = fluid.optimizer.LookaheadOptimizer(sgd,
                                            alpha=0.5,
                                            k=5)
	    optimizer.minimize(loss)
	    main_program = fluid.default_main_program()
	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())

	    feeder = fluid.DataFeeder(feed_list=[x, label], place=place)

	    step = 0
            while(step < 10):
                step += 1
		exe.run(fluid.default_main_program(),
            	feed=feeder.feed(batch_data))

    """

    def __init__(self, inner_optimizer, alpha=0.5, k=5):

Z
zhongpu 已提交
4087 4088
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support LookaheadOptimizer.")
M
mapingshuo 已提交
4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184
        assert (inner_optimizer is not None), "inner optimizer can not be None"
        assert (
            0.0 <= alpha <= 1.0
        ), "alpha should be larger or equal to 0.0, and less or equal than 1.0"
        assert (isinstance(k, int) and k > 0), "k should be a positive integer"

        self.inner_optimizer = inner_optimizer
        self.alpha = alpha
        self.k = k
        self.type = "lookahead"

    def minimize(self, loss, startup_program=None):

        # Apply inner optimizer to the main_program
        mini_out = self.inner_optimizer.minimize(
            loss, startup_program=startup_program)

        # Get startup_program and main_program
        if startup_program is None:
            startup_program = default_startup_program()
        main_block = loss.block

        # add some vars to the main_program
        params = [param.name for param in main_block.all_parameters()]
        param_to_slow = {}
        for param in params:
            fast_var = main_block.var(param)
            assert (fast_var is not None)
            slow_var = main_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True)
            param_to_slow[param] = slow_var

        # add some vars to the startup_program
        startup_block = startup_program.global_block()
        for param in params:
            fast_var = startup_block.var(param)
            assert (fast_var is not None)
            slow_var = startup_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True)

            startup_block.append_op(
                type="assign",
                inputs={"X": fast_var},
                outputs={"Out": slow_var})

        # Add Var k to main prog and startup prog
        k = layers.create_global_var(
            name="lookahead_k",
            shape=[1],
            value=int(self.k),
            dtype='int32',
            persistable=True)

        # Add Var alpha to main prog and startup prog
        alpha = layers.create_global_var(
            name="lookahead_alpha",
            shape=[1],
            value=float(self.alpha),
            dtype='float32',
            persistable=True)

        # Add Var step
        step = layers.create_global_var(
            name="lookahead_step",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True)
        layers.increment(x=step, value=1.0, in_place=True)

        # lookahead
        zero_var = layers.fill_constant(shape=[1], dtype='float32', value=0.0)

        one_var = layers.fill_constant(shape=[1], dtype='float32', value=1.0)

        mod = layers.elementwise_mod(step, k)
        with layers.control_flow.Switch() as switch:
            with switch.case(mod == zero_var):
                for param_name in params:
                    fast_var = main_block.var(param_name)
                    slow_var = param_to_slow[param_name]
                    tmp_var = layers.elementwise_add(
                        layers.elementwise_mul(fast_var, alpha),
                        layers.elementwise_mul(
                            slow_var, layers.elementwise_sub(one_var, alpha)))
                    layers.assign(input=tmp_var, output=slow_var)
                    layers.assign(input=tmp_var, output=fast_var)
            with switch.default():
                pass
        return mini_out