crop_op.h 5.9 KB
Newer Older
W
whs 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14 15

#pragma once
S
Siddharth Goyal 已提交
16 17
#include <utility>
#include <vector>
Y
Yi Wang 已提交
18 19 20
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/strided_memcpy.h"
W
wanghaoshuang 已提交
21 22

namespace paddle {
23
namespace operators {  // Internal
W
wanghaoshuang 已提交
24 25 26 27

template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
28 29
using framework::Tensor;

F
stash  
fengjiayi 已提交
30 31 32 33 34 35 36 37 38 39 40 41
static std::vector<int> GetOffsets(const framework::ExecutionContext& ctx) {
  std::vector<int> res;
  int rank = ctx.Input<Tensor>("X")->dims().size();
  if (ctx.HasInput("Offsets")) {
    PADDLE_ENFORCE(ctx.Attr<std::vector<int>>("offsets").empty(),
                   "Input 'Offsets' and attribute 'offsets' should not be used "
                   "at the same time.");
    const auto* offsets_tensor = ctx.Input<Tensor>("Offsets");
    PADDLE_ENFORCE_EQ(offsets_tensor->dims().size(), 1);
    PADDLE_ENFORCE_EQ(
        rank, offsets_tensor->dims()[0],
        "Offsets size should be equal to dimension size of input tensor.");
F
fengjiayi 已提交
42 43 44 45 46 47 48 49
    const int* offsets_data;
    framework::Tensor cpu_tmp_tensor;
    if (platform::is_cpu_place(offsets_tensor->place())) {
      offsets_data = offsets_tensor->data<int>();
    } else {
      framework::TensorCopySync(*offsets_tensor, platform::CPUPlace(),
                                &cpu_tmp_tensor);
      offsets_data = cpu_tmp_tensor.data<int>();
F
stash  
fengjiayi 已提交
50
    }
F
fengjiayi 已提交
51
    res = std::vector<int>(offsets_data, offsets_data + rank);
F
stash  
fengjiayi 已提交
52 53 54
  } else {
    res = ctx.Attr<std::vector<int>>("offsets");
    PADDLE_ENFORCE_EQ(
G
gongweibao 已提交
55
        rank, static_cast<int>(res.size()),
F
stash  
fengjiayi 已提交
56 57 58 59 60
        "Offsets size should be equal to dimension size of input tensor.");
  }
  return res;
}

W
whs 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
template <typename DeviceContext, typename T, size_t D>
void CropFunction(const framework::ExecutionContext& context) {
  auto* x = context.Input<Tensor>("X");
  auto* out = context.Output<Tensor>("Out");
  auto out_dims = out->dims();
  if (out_dims[0] == -1) {
    out_dims[0] = x->dims()[0];
  }
  out->mutable_data<T>(out_dims, context.GetPlace());
  auto x_stride = framework::stride(x->dims());
  auto offsets = GetOffsets(context);
  int64_t offset = 0;
  for (size_t i = 0; i < offsets.size(); ++i) {
    offset += (x_stride[i] * offsets[i]);
  }

  auto x_tensor = EigenTensor<T, D>::From(*x);
  auto out_tensor = EigenTensor<T, D>::From(*out);
  Eigen::array<int, D> e_offsets;
  Eigen::array<int, D> e_shape;
  for (size_t i = 0; i < D; ++i) {
    e_offsets[i] = offsets[i];
    e_shape[i] = out->dims()[i];
  }
  auto& place =
      *context.template device_context<DeviceContext>().eigen_device();
  out_tensor.device(place) = x_tensor.slice(e_offsets, e_shape);
}

template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
91
class CropKernel : public framework::OpKernel<T> {
92 93
 public:
  void Compute(const framework::ExecutionContext& context) const override {
W
whs 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
    int rank = context.Input<Tensor>("X")->dims().size();
    switch (rank) {
      case 1:
        CropFunction<DeviceContext, T, 1>(context);
        break;
      case 2:
        CropFunction<DeviceContext, T, 2>(context);
        break;
      case 3:
        CropFunction<DeviceContext, T, 3>(context);
        break;
      case 4:
        CropFunction<DeviceContext, T, 4>(context);
        break;
      case 5:
        CropFunction<DeviceContext, T, 5>(context);
        break;
      case 6:
        CropFunction<DeviceContext, T, 6>(context);
        break;
      default:
        PADDLE_THROW(
            "CropOp only support tensors with no more than 6 dimensions.");
117 118 119
    }
  }
};
W
wanghaoshuang 已提交
120

Q
QI JUN 已提交
121
template <typename DeviceContext, typename T, size_t D>
W
wanghaoshuang 已提交
122
void CropGradFunction(const framework::ExecutionContext& context) {
123
  auto* d_x = context.Output<Tensor>(framework::GradVarName("X"));
W
whs 已提交
124
  auto* x = context.Input<Tensor>("X");
125
  if (d_x != nullptr) {
126
    auto* d_out = context.Input<Tensor>(framework::GradVarName("Out"));
W
whs 已提交
127
    d_x->mutable_data<T>(x->dims(), context.GetPlace());
F
stash  
fengjiayi 已提交
128
    auto offsets = GetOffsets(context);
129
    Eigen::array<std::pair<int, int>, D> paddings;
Q
qiaolongfei 已提交
130
    for (size_t i = 0; i < D; ++i) {
131
      paddings[i].first = offsets[i];
W
wanghaoshuang 已提交
132
      paddings[i].second = d_x->dims()[i] - d_out->dims()[i] - offsets[i];
133 134 135
    }
    auto d_x_tensor = EigenTensor<T, D>::From(*d_x);
    auto d_out_tensor = EigenTensor<T, D>::From(*d_out);
Q
QI JUN 已提交
136 137
    d_x_tensor.device(
        *context.template device_context<DeviceContext>().eigen_device()) =
138
        d_out_tensor.pad(paddings, 0);
W
wanghaoshuang 已提交
139 140 141
  }
}

Q
QI JUN 已提交
142
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
143
class CropGradKernel : public framework::OpKernel<T> {
W
wanghaoshuang 已提交
144 145
 public:
  void Compute(const framework::ExecutionContext& context) const override {
146
    size_t rank =
147
        context.Input<Tensor>(framework::GradVarName("Out"))->dims().size();
148
    switch (rank) {
W
wanghaoshuang 已提交
149
      case 1:
Q
QI JUN 已提交
150
        CropGradFunction<DeviceContext, T, 1>(context);
W
wanghaoshuang 已提交
151 152
        break;
      case 2:
Q
QI JUN 已提交
153
        CropGradFunction<DeviceContext, T, 2>(context);
W
wanghaoshuang 已提交
154 155
        break;
      case 3:
Q
QI JUN 已提交
156
        CropGradFunction<DeviceContext, T, 3>(context);
W
wanghaoshuang 已提交
157 158
        break;
      case 4:
Q
QI JUN 已提交
159
        CropGradFunction<DeviceContext, T, 4>(context);
W
wanghaoshuang 已提交
160 161
        break;
      case 5:
Q
QI JUN 已提交
162
        CropGradFunction<DeviceContext, T, 5>(context);
W
wanghaoshuang 已提交
163 164
        break;
      case 6:
Q
QI JUN 已提交
165
        CropGradFunction<DeviceContext, T, 6>(context);
W
wanghaoshuang 已提交
166 167
        break;
      default:
168 169
        PADDLE_THROW(
            "CropOp only support tensors with no more than 6 dimensions.");
W
wanghaoshuang 已提交
170 171 172 173 174 175
    }
  }
};

}  // namespace operators
}  // namespace paddle