launch.py 11.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
15
fleetrun is a module that spawns multiple distributed
16 17
process on each training node for gpu training and cpu training.
Usage:
18
    In both of single node training or multiple node training, this module
19 20 21 22 23 24 25 26
launch a process on each of the given gpu card or cpu machine.
    GPU training:
    1. for single node training with all visible gpu cards:
       fleetrun your_training_py (arg1 arg2 and all others)
    2. for single node training with [0,4) cards
       fleetrun --gpus="0,1,2,3" your_training_py (arg1 arg2 and all others)
    3. for multiple node training such as two node:192.168.0.16, 192.168.0.17
        on 192.168.0.16:
27
            fleetrun --ips="192.168.0.16,192.168.0.17" \
28 29 30 31 32 33
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --ips="192.168.0.16,192.168.0.17" \
                your_training_py (arg1 arg2 and all others)
    CPU training:
    1. for single node training with multi servers and workers:
34
        fleetrun --server_num=2 --worker_num=2 your_training_py (arg1 arg2 and all others)
35
    2. for multiple node training such as two node:192.168.0.16, 192.168.0.17 \
36
        with 2 servers and 4 workers.
37
        on 192.168.0.16:
38 39
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16,192.168.0.17,192.168.0.16,192.168.0.17" \
40 41 42
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6171" \
43 44 45 46 47 48 49 50 51 52 53
                --workers="192.168.0.16,192.168.0.17,192.168.0.16,192.168.0.17" \
                your_training_py (arg1 arg2 and all others)
    3. use gloo backend for multiple node training such as two node:192.168.0.16, 192.168.0.17 \
        with 2 servers and 4 workers. (workers should set port)
        on 192.168.0.16:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16:6171,192.168.0.17:6171,192.168.0.16:6172,192.168.0.17:6172" \
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16:6171,192.168.0.17:6171,192.168.0.16:6172,192.168.0.17:6172" \
54 55 56 57
                your_training_py (arg1 arg2 and all others)
"""

from __future__ import print_function
58 59

import shutil
60
import sys
61
import tempfile
62 63 64 65 66 67 68 69 70 71
from sys import version
import subprocess
import os
import time
import six
import copy
from argparse import ArgumentParser, REMAINDER
import paddle
import paddle.fluid as fluid

72 73
from paddle.distributed.fleet.launch_utils import *
import paddle.distributed.fleet.cloud_utils as cloud_utils
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91


def _print_arguments(args):
    print("-----------  Configuration Arguments -----------")
    for arg, value in sorted(six.iteritems(vars(args))):
        print("%s: %s" % (arg, value))
    print("------------------------------------------------")


def _parse_args():
    """
    Helper function parsing the command line options
    @retval ArgumentParser
    """
    parser = ArgumentParser(
        description='''start paddle training using multi-process mode.
see: http://www.paddlepaddle.org/documentation/docs/zh/1.6/user_guides/howto/training/cluster_howto.html#permalink-8--nccl2-
''')
92
    base_group = parser.add_argument_group("Base Parameters")
93

94 95
    base_group.add_argument(
        "--log_dir",
96
        type=str,
97 98 99 100 101
        default="log",
        help="The path for each process's log.If it's not set, the log will printed to default pipe."
    )

    base_group.add_argument(
102 103 104 105 106 107 108
        "--gpus",
        type=str,
        default=None,
        help="It's for gpu training and the training process will run on the gpus,"
        "each process is bound to a single GPU. And if it's not set, this module will use all the gpu cards for training."
    )

109
    base_group.add_argument(
110 111 112 113 114 115 116
        "training_script",
        type=str,
        help="The full path to the single GPU training "
        "program/script to be launched in parallel, "
        "followed by all the arguments for the "
        "training script")

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    base_group.add_argument('training_script_args', nargs=REMAINDER)

    # Optional arguments for the launch helper
    # for collective
    collective_group = parser.add_argument_group("Collective Parameters")
    collective_group.add_argument(
        "--ips",
        type=str,
        default="127.0.0.1",
        help="Paddle cluster nodes ips, such as 192.168.0.16,192.168.0.17..")

    ps_group = parser.add_argument_group("Parameter-Server Parameters")
    # for parameter server
    ps_group.add_argument(
        "--servers", type=str, default="", help="User defined servers ip:port")
    ps_group.add_argument(
        "--workers", type=str, default="", help="User defined workers ip:port")
    ps_group.add_argument(
        "--heter_workers",
        type=str,
        default="",
        help="User defined heter workers ip:port")

    ps_group.add_argument("--worker_num", type=int, help="number of workers")
    ps_group.add_argument("--server_num", type=int, help="number of servers")
    ps_group.add_argument(
        "--heter_worker_num", type=int, help="number of heter_workers")
144
    ps_group.add_argument("--http_port", type=int, help="Gloo http Port")
145

146 147 148 149 150 151 152 153 154 155 156
    return parser.parse_args()


def get_cluster_from_args(args, gpus):
    node_ips = [x.strip() for x in args.ips.split(',')]
    if len(node_ips) == 1:
        node_ip = node_ips[0]
    else:
        _, node_ip = get_host_name_ip()

    # node_ip = args.node_ip
157
    assert node_ip in node_ips, "Can't find your local ip {%s} in node_ips: {%s}" \
158
        % (node_ip, node_ips)
159 160
    node_rank = node_ips.index(node_ip)

161
    logger.debug("parsed from args: node_ips:{} node_ip:{} node_rank:{}".format(
162 163 164 165 166 167 168 169 170 171 172
        node_ips, node_ip, node_rank))

    free_ports = None
    if not cloud_utils.use_paddlecloud() and len(
            node_ips) <= 1 and os.environ.get('FLAGS_START_PORT') is None:
        free_ports = find_free_ports(len(gpus))
        if free_ports is not None:
            free_ports = list(free_ports)
    else:
        start_port = 6070
        if os.environ.get('FLAGS_START_PORT') is not None:
173
            start_port = int(os.environ.get('FLAGS_START_PORT'))
174 175 176

        free_ports = [x for x in range(start_port, start_port + len(gpus))]

177 178 179 180
    trainer_endpoints = []
    for ip in node_ips:
        trainer_endpoints.append(["%s:%d" % (ip, port) for port in free_ports])
    return get_cluster(node_ips, node_ip, trainer_endpoints, gpus)
181 182 183 184 185 186 187 188 189 190 191 192


def launch_collective(args):
    # parse arguments, used for cloud-single-machine and local
    gpus = get_gpus(args.gpus)
    trainers_num = cloud_utils.get_trainers_num()
    logger.debug("parsed from args trainerss_num:{} gpus:{}".format(
        trainers_num, gpus))

    cluster = None
    pod = None

193 194 195
    start_port = 6170
    if os.environ.get('FLAGS_START_PORT') is not None:
        start_port = os.environ.get('FLAGS_START_PORT')
196
    if cloud_utils.use_paddlecloud() and trainers_num != 1:
197
        cluster, pod = cloud_utils.get_cloud_cluster(args.ips, gpus, start_port)
198
        logger.debug("get cluster from cloud:{}".format(cluster))
199 200 201
    else:
        # trainers_num = 1 or not use paddlecloud ips="a,b"
        cluster, pod = get_cluster_from_args(args, gpus)
202
        logger.debug("get cluster from args:{}".format(cluster))
203

204 205 206 207
    global_envs = copy.copy(os.environ.copy())
    gloo_rendezvous_dir = tempfile.mkdtemp()
    # add gloo env
    global_envs["PADDLE_WITH_GLOO"] = "1"
208
    global_envs["PADDLE_GLOO_RENDEZVOUS"] = "3"
209 210
    global_envs["PADDLE_GLOO_FS_PATH"] = gloo_rendezvous_dir

211 212 213 214 215
    procs = start_local_trainers(
        cluster,
        pod,
        training_script=args.training_script,
        training_script_args=args.training_script_args,
216 217
        log_dir=args.log_dir,
        envs=global_envs)
218 219 220 221 222

    while True:
        alive = watch_local_trainers(procs, cluster.trainers_nranks())

        if not alive:
223 224
            logger.info("Local processes completed.")
            logger.debug("POD info:{}".format(pod))
225 226 227 228
            break

        time.sleep(3)

229 230 231
    if os.path.exists(gloo_rendezvous_dir):
        shutil.rmtree(gloo_rendezvous_dir)

232

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
def launch_ps(args, distribute_mode):
    cloud_flag = cloud_utils.use_paddlecloud()

    # for ps-cpu on paddlecloud
    if cloud_flag and distribute_mode == DistributeMode.PS:
        direct_start(args)
        return
    elif cloud_flag and distribute_mode == DistributeMode.PS_HETER:
        cloud_ps_heter_env_set(args)
        args.workers = os.getenv("PADDLE_TRAINER_ENDPOINTS")
        args.servers = os.getenv("PADDLE_PSERVERS_IP_PORT_LIST")
        args.heter_workers = os.getenv("PADDLE_HETER_TRAINER_IP_PORT_LIST")

    ps_launcher = ParameterServerLauncher(args, distribute_mode)
    ps_launcher.start_ps()
    return


def which_distributed_mode(args):
    ps_args = [
253 254
        '--worker_num', '--server_num', '--heter_worker_num', '--servers',
        '--workers', '--heter_workers', '--http_port'
255
    ]
256
    collective_args = ['--ips']
257

258
    ps_heter_args = ["--heter_worker_num", "--heter_workers"]
259 260 261 262 263 264 265 266

    has_ps_args = [
        ps_arg for ps_arg in ps_args if ps_arg in " ".join(sys.argv[1:-1])
    ]
    has_collective_args = [
        co_arg for co_arg in collective_args
        if co_arg in " ".join(sys.argv[1:-1])
    ]
267 268 269 270 271 272

    if len(has_ps_args) > 1 and len(has_collective_args) > 1:
        raise ValueError(
            "Only one mode(Collective or Parameter-Server) can be selected at the same time, but more than one configuration was received."
        )

273 274 275 276 277
    if fluid.core.is_compiled_with_cuda():
        cuda_device_num = fluid.core.get_cuda_device_count()
    else:
        cuda_device_num = 0

278 279 280 281 282 283 284 285 286
    if len(has_ps_args) > 0:
        logger.info(
            "Run parameter-sever mode. pserver arguments:{}, cuda count:{}".
            format(has_ps_args, cuda_device_num))
        has_ps_heter_args = list(set(has_ps_args) & set(ps_heter_args))
        if len(has_ps_heter_args) > 0:
            return DistributeMode.PS_HETER
        else:
            return DistributeMode.PS
287
    elif len(has_collective_args) > 0:
288
        logger.info("Run collective gpu mode. gpu arguments:{}, cuda count:{}".
289
                    format(has_collective_args, cuda_device_num))
290
        return DistributeMode.COLLECTIVE
291
    else:
292 293 294 295 296 297 298 299 300 301
        if not fluid.core.is_compiled_with_cuda():
            logger.warning(
                "Not found distinct arguments and not compiled with cuda. Default use ps mode"
            )
            return DistributeMode.PS
        else:
            logger.warning(
                "Not found distinct arguments and compiled with cuda. Default use collective mode"
            )
            return DistributeMode.COLLECTIVE
302 303 304 305 306 307 308 309 310


def launch():
    args = _parse_args()
    logger = get_logger()
    _print_arguments(args)

    distribute_mode = which_distributed_mode(args)
    if distribute_mode == DistributeMode.COLLECTIVE:
311
        launch_collective(args)
312 313
    else:
        launch_ps(args, distribute_mode)
314 315 316 317


if __name__ == "__main__":
    launch()