activation_kernel.cc 17.2 KB
Newer Older
Y
ykkk2333 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/phi/kernels/activation_kernel.h"

#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/activation_functor.h"

#include "paddle/fluid/memory/memory.h"

namespace phi {

template <typename T, typename Context, typename Functor>
void ActivationXPUImpl(const Context& dev_ctx,
                       const DenseTensor& x,
                       DenseTensor* out,
                       const Functor& functor) {
  PADDLE_ENFORCE_NOT_NULL(out,
                          errors::NotFound("Output Out should not be nullptr"));
  dev_ctx.template Alloc<T>(out);
  functor(dev_ctx, x, out);
}

#define DEFINE_XPU_ACTIVATION_KERNEL(name, functor_class)                      \
  template <typename T, typename Context>                                      \
  void name##Kernel(                                                           \
      const Context& dev_ctx, const DenseTensor& x, DenseTensor* out) {        \
    functor_class<T> functor;                                                  \
    ActivationXPUImpl<T, Context, functor_class<T>>(dev_ctx, x, out, functor); \
  }

#define DEFINE_XPU_ACTIVATION_KERNEL_WITH_ONE_ATTRS(name, functor_class, attr) \
  template <typename T, typename Context>                                      \
  void name##Kernel(const Context& dev_ctx,                                    \
                    const DenseTensor& x,                                      \
                    float attr,                                                \
                    DenseTensor* out) {                                        \
    functor_class<T> functor;                                                  \
    auto attrs = functor.GetAttrs();                                           \
    *(attrs[0].second) = attr;                                                 \
    ActivationXPUImpl<T, Context, functor_class<T>>(dev_ctx, x, out, functor); \
  }

#define DEFINE_XPU_ACTIVATION_KERNEL_WITH_TWO_ATTRS(                           \
    name, functor_class, attr1, attr2)                                         \
  template <typename T, typename Context>                                      \
  void name##Kernel(const Context& dev_ctx,                                    \
                    const DenseTensor& x,                                      \
                    float attr1,                                               \
                    float attr2,                                               \
                    DenseTensor* out) {                                        \
    functor_class<T> functor;                                                  \
    auto attrs = functor.GetAttrs();                                           \
    *(attrs[0].second) = attr1;                                                \
    *(attrs[1].second) = attr2;                                                \
    ActivationXPUImpl<T, Context, functor_class<T>>(dev_ctx, x, out, functor); \
  }

template <typename Context, typename T, typename XPUType>
int xpu_activation_func(
    const Context& dev_ctx,
    const DenseTensor& x,
    DenseTensor* out,
    std::function<int(xpu::Context*, const XPUType*, XPUType*, int)> func) {
  int r = func(dev_ctx.x_context(),
               reinterpret_cast<const XPUType*>(x.data<T>()),
               reinterpret_cast<XPUType*>(out->data<T>()),
               x.numel());
  return r;
}

template <typename Context, typename T, typename XPUType>
85
int xpu_activation_func_with_max_x_y(
Y
ykkk2333 已提交
86 87 88
    const Context& dev_ctx,
    const DenseTensor& x,
    DenseTensor* out,
89 90
    std::function<
        int(xpu::Context*, const XPUType*, XPUType*, int, const float*, float*)>
Y
ykkk2333 已提交
91
        func) {
92
  // does not support "const float* max_x, float* max_y" now
Y
ykkk2333 已提交
93 94 95 96
  int r = func(dev_ctx.x_context(),
               reinterpret_cast<const XPUType*>(x.data<T>()),
               reinterpret_cast<XPUType*>(out->data<T>()),
               x.numel(),
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
               nullptr,
               nullptr);
  return r;
}

template <typename Context, typename T, typename XPUType>
int xpu_activation_1attr_func(const Context& dev_ctx,
                              const DenseTensor& x,
                              DenseTensor* out,
                              float attr,
                              std::function<int(xpu::Context*,
                                                const XPUType*,
                                                XPUType*,
                                                int,
                                                float,
                                                const float*,
                                                float*)> func) {
  // does not support "const float* max_x, float* max_y" now
  int r = func(dev_ctx.x_context(),
               reinterpret_cast<const XPUType*>(x.data<T>()),
               reinterpret_cast<XPUType*>(out->data<T>()),
               x.numel(),
               attr,
               nullptr,
               nullptr);
Y
ykkk2333 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
  return r;
}

template <typename Context, typename T, typename XPUType>
int xpu_activation_2attr_func(
    const Context& dev_ctx,
    const DenseTensor& x,
    DenseTensor* out,
    float attr1,
    float attr2,
    std::function<
        int(xpu::Context*, const XPUType*, XPUType*, int, float, float)> func) {
  int r = func(dev_ctx.x_context(),
               reinterpret_cast<const XPUType*>(x.data<T>()),
               reinterpret_cast<XPUType*>(out->data<T>()),
               x.numel(),
               attr1,
               attr2);
  return r;
}

template <typename T>
struct XPUExpFunctor : public funcs::BaseActivationFunctor<T> {
  using XPUType = typename XPUTypeTrait<T>::Type;
  template <typename Context>
  void operator()(const Context& dev_ctx,
                  const DenseTensor& x,
                  DenseTensor* out) const {
    int r = xpu_activation_func<Context, T, XPUType>(
        dev_ctx, x, out, xpu::exp<XPUType>);
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "exp");
  }
};

template <typename T>
struct XPULogFunctor : public funcs::BaseActivationFunctor<T> {
  using XPUType = typename XPUTypeTrait<T>::Type;
  template <typename Context>
  void operator()(const Context& dev_ctx,
                  const DenseTensor& x,
                  DenseTensor* out) const {
    int r = xpu_activation_func<Context, T, XPUType>(
        dev_ctx, x, out, xpu::log<XPUType>);
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "log");
  }
};

template <typename T>
struct XPULeakyReluFunctor : public funcs::BaseActivationFunctor<T> {
  float alpha;
  typename funcs::BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
  template <typename Context>
  void operator()(const Context& dev_ctx,
                  const DenseTensor& x,
                  DenseTensor* out) const {
    using XPUType = typename XPUTypeTrait<T>::Type;
    int r = xpu_activation_1attr_func<Context, T, XPUType>(
        dev_ctx, x, out, alpha, xpu::leaky_relu<XPUType>);
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "leaky_relu");
  }
};

template <typename T, typename Context>
void PowKernel(const Context& dev_ctx,
               const DenseTensor& x,
               const Scalar& factor,
               DenseTensor* out) {
  dev_ctx.template Alloc<T>(out);
  float pow_factor = factor.to<float>();
  const T* x_data = x.data<T>();
  T* y_data = out->data<T>();

  auto xpu_context = dev_ctx.x_context();
  // allocate temp memory for factor on xpu
  xpu::ctx_guard RAII_GUARD(xpu_context);
  T* factor_data = RAII_GUARD.alloc_l3_or_gm<T>(1);
  PADDLE_ENFORCE_NOT_NULL(
      factor_data, errors::External("XPU alloc_l3_or_gm returns nullptr"));
  paddle::memory::Copy(dev_ctx.GetPlace(),
                       static_cast<void*>(factor_data),
                       phi::CPUPlace(),
                       static_cast<void*>(&pow_factor),
                       sizeof(T));

  // broadcast_pow(Context* ctx, const T* x, const T* y, T* z, const
  // std::vector<int>& xshape, const std::vector<int>& yshape);
  auto x_dims = vectorize<int>(x.dims());
  int r =
      xpu::broadcast_pow(xpu_context, x_data, factor_data, y_data, x_dims, {1});
  PADDLE_ENFORCE_XDNN_SUCCESS(r, "broadcast_pow");
}

template <typename T>
struct XPUHardSwishFunctor : public funcs::BaseActivationFunctor<T> {
  float threshold;
  float scale;
  float offset;

  typename funcs::BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}, {"scale", &scale}, {"offset", &offset}};
  }

  template <typename Context>
  void operator()(const Context& dev_ctx,
                  const DenseTensor& x,
                  DenseTensor* out) const {
    using XPUType = typename XPUTypeTrait<T>::Type;
    PADDLE_ENFORCE_EQ(
        threshold,
        6.0f,
        errors::External("Not support threshold [%f] in XPU", threshold));
    PADDLE_ENFORCE_EQ(
        scale, 6.0f, errors::External("Not support scale [%f] in XPU", scale));
    PADDLE_ENFORCE_EQ(
        offset,
        3.0f,
        errors::External("Not support offset [%f] in XPU", offset));
241
    int r = xpu_activation_func_with_max_x_y<Context, T, XPUType>(
Y
ykkk2333 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
        dev_ctx, x, out, xpu::hard_swish<XPUType>);
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "hard_swish");
  }
};

template <typename T>
struct XPUReciprocalFunctor : public funcs::BaseActivationFunctor<T> {
  using XPUType = typename XPUTypeTrait<T>::Type;
  template <typename Context>
  void operator()(const Context& dev_ctx,
                  const DenseTensor& x,
                  DenseTensor* out) const {
    int r = xpu_activation_func<Context, T, XPUType>(
        dev_ctx, x, out, xpu::reciprocal<XPUType>);
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "reciprocal");
  }
};

template <typename T>
struct XPUReluFunctor : public funcs::BaseActivationFunctor<T> {
  using XPUType = typename XPUTypeTrait<T>::Type;
  template <typename Context>
  void operator()(const Context& dev_ctx,
                  const DenseTensor& x,
                  DenseTensor* out) const {
    const XPUType* x_data = reinterpret_cast<const XPUType*>(x.data<T>());
    XPUType* y_data = reinterpret_cast<XPUType*>(out->data<T>());

    auto xpu_context = dev_ctx.x_context();
    int r = xpu::relu(xpu_context, x_data, y_data, x.numel(), nullptr, nullptr);
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "relu");
  }
};

template <typename T>
struct XPURelu6Functor : public funcs::BaseActivationFunctor<T> {
  using XPUType = typename XPUTypeTrait<T>::Type;
  float threshold;
  typename funcs::BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
  template <typename Context>
  void operator()(const Context& dev_ctx,
                  const DenseTensor& x,
                  DenseTensor* out) const {
287
    int r = xpu_activation_func_with_max_x_y<Context, T, XPUType>(
Y
ykkk2333 已提交
288 289 290 291 292 293 294 295 296 297 298 299
        dev_ctx, x, out, xpu::relu6<XPUType>);
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "relu6");
  }
};

template <typename T>
struct XPUSigmoidFunctor : public funcs::BaseActivationFunctor<T> {
  using XPUType = typename XPUTypeTrait<T>::Type;
  template <typename Context>
  void operator()(const Context& dev_ctx,
                  const DenseTensor& x,
                  DenseTensor* out) const {
300
    int r = xpu_activation_func_with_max_x_y<Context, T, XPUType>(
Y
ykkk2333 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
        dev_ctx, x, out, xpu::sigmoid<XPUType>);
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "sigmoid");
  }
};

template <typename T>
struct XPUSquareFunctor : public funcs::BaseActivationFunctor<T> {
  using XPUType = typename XPUTypeTrait<T>::Type;
  template <typename Context>
  void operator()(const Context& dev_ctx,
                  const DenseTensor& x,
                  DenseTensor* out) const {
    int r = xpu_activation_func<Context, T, XPUType>(
        dev_ctx, x, out, xpu::square<XPUType>);
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "square");
  }
};

template <typename T>
struct XPUSqrtFunctor : public funcs::BaseActivationFunctor<T> {
  using XPUType = typename XPUTypeTrait<T>::Type;
  template <typename Context>
  void operator()(const Context& dev_ctx,
                  const DenseTensor& x,
                  DenseTensor* out) const {
    int r = xpu_activation_func<Context, T, XPUType>(
        dev_ctx, x, out, xpu::sqrt<XPUType>);
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "sqrt");
  }
};

template <typename T>
struct XPUMishFunctor : public funcs::BaseActivationFunctor<T> {
  using XPUType = typename XPUTypeTrait<T>::Type;
  float threshold;
  typename funcs::BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

  template <typename Context>
  void operator()(const Context& dev_ctx,
                  const DenseTensor& x,
                  DenseTensor* out) const {
    int r = xpu_activation_1attr_func<Context, T, XPUType>(
        dev_ctx, x, out, threshold, xpu::mish<XPUType>);
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "mish");
  }
};

template <typename T, typename Context>
void SwishKernel(const Context& dev_ctx,
                 const DenseTensor& x,
                 float beta,
                 DenseTensor* out) {
  using XPUType = typename XPUTypeTrait<T>::Type;
  dev_ctx.template Alloc<T>(out);
  int r = xpu::swish(dev_ctx.x_context(),
                     reinterpret_cast<const XPUType*>(x.data<T>()),
                     reinterpret_cast<XPUType*>(out->data<T>()),
                     x.numel());
  PADDLE_ENFORCE_XDNN_SUCCESS(r, "swish");
}

template <typename T>
struct XPUSoftplusFunctor : public funcs::BaseActivationFunctor<T> {
  using XPUType = typename XPUTypeTrait<T>::Type;
  float beta;
  float threshold;

  typename funcs::BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}, {"threshold", &threshold}};
  }

  template <typename Context>
  void operator()(const Context& dev_ctx,
                  const DenseTensor& x,
                  DenseTensor* out) const {
    int r = xpu_activation_2attr_func<Context, T, XPUType>(
        dev_ctx, x, out, beta, threshold, xpu::softplus<XPUType>);
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "softplus");
  }
};

template <typename T>
struct XPUTanhFunctor : public funcs::BaseActivationFunctor<T> {
  using XPUType = typename XPUTypeTrait<T>::Type;
  template <typename Context>
  void operator()(const Context& dev_ctx,
                  const DenseTensor& x,
                  DenseTensor* out) const {
391
    int r = xpu_activation_func_with_max_x_y<Context, T, XPUType>(
Y
ykkk2333 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
        dev_ctx, x, out, xpu::tanh<XPUType>);
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "tanh");
  }
};

DEFINE_XPU_ACTIVATION_KERNEL(Exp, XPUExpFunctor)
DEFINE_XPU_ACTIVATION_KERNEL(Log, XPULogFunctor)
DEFINE_XPU_ACTIVATION_KERNEL(Reciprocal, XPUReciprocalFunctor)
DEFINE_XPU_ACTIVATION_KERNEL(Relu, XPUReluFunctor)
DEFINE_XPU_ACTIVATION_KERNEL(Sigmoid, XPUSigmoidFunctor)
DEFINE_XPU_ACTIVATION_KERNEL(Square, XPUSquareFunctor)
DEFINE_XPU_ACTIVATION_KERNEL(Sqrt, XPUSqrtFunctor)
DEFINE_XPU_ACTIVATION_KERNEL(Tanh, XPUTanhFunctor)

DEFINE_XPU_ACTIVATION_KERNEL_WITH_ONE_ATTRS(Mish, XPUMishFunctor, threshold)
DEFINE_XPU_ACTIVATION_KERNEL_WITH_ONE_ATTRS(LeakyRelu,
                                            XPULeakyReluFunctor,
                                            alpha)
DEFINE_XPU_ACTIVATION_KERNEL_WITH_ONE_ATTRS(Relu6, XPURelu6Functor, threshold)

DEFINE_XPU_ACTIVATION_KERNEL_WITH_TWO_ATTRS(Softplus,
                                            XPUSoftplusFunctor,
                                            beta,
                                            threshold)

template <typename T, typename Context>
void HardSwishKernel(const Context& dev_ctx,
                     const DenseTensor& x,
                     float threshold,
                     float scale,
                     float offset,
                     DenseTensor* out) {
  XPUHardSwishFunctor<T> functor;
  auto attrs = functor.GetAttrs();
  *(attrs[0].second) = threshold;
  *(attrs[1].second) = scale;
  *(attrs[2].second) = offset;
  ActivationXPUImpl<T, Context, XPUHardSwishFunctor<T>>(
      dev_ctx, x, out, functor);
}

}  // namespace phi

PD_REGISTER_KERNEL(
    relu, XPU, ALL_LAYOUT, phi::ReluKernel, float, phi::dtype::float16) {}

#define PD_REGISTER_ACTIVATION_KERNEL(name, func) \
  PD_REGISTER_KERNEL(name, XPU, ALL_LAYOUT, phi::func, float) {}

PD_REGISTER_KERNEL(
    tanh, XPU, ALL_LAYOUT, phi::TanhKernel, float, phi::dtype::float16) {}

PD_REGISTER_ACTIVATION_KERNEL(exp, ExpKernel)  // no grad
PD_REGISTER_ACTIVATION_KERNEL(log, LogKernel)
PD_REGISTER_ACTIVATION_KERNEL(leaky_relu, LeakyReluKernel)
PD_REGISTER_ACTIVATION_KERNEL(hard_swish, HardSwishKernel)
PD_REGISTER_ACTIVATION_KERNEL(mish, MishKernel)
PD_REGISTER_ACTIVATION_KERNEL(pow, PowKernel)
PD_REGISTER_ACTIVATION_KERNEL(reciprocal, ReciprocalKernel)
PD_REGISTER_ACTIVATION_KERNEL(relu6, Relu6Kernel)
PD_REGISTER_ACTIVATION_KERNEL(sigmoid, SigmoidKernel)
PD_REGISTER_ACTIVATION_KERNEL(sqrt, SqrtKernel)
PD_REGISTER_ACTIVATION_KERNEL(swish, SwishKernel)
PD_REGISTER_ACTIVATION_KERNEL(softplus, SoftplusKernel)
PD_REGISTER_ACTIVATION_KERNEL(square, SquareKernel)