triu_indices_kernel.cu 4.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/triu_indices_kernel.h"

#include <algorithm>
#include <tuple>

#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/core/kernel_registry.h"

namespace phi {

template <typename T>
__device__ inline int resolve_root_int(int b, int cX4, int x, int32_t sign) {
  int64_t bXb_cX4 = b * b - cX4;
  double sr = ::sqrt(static_cast<double>(bXb_cX4));
  T res = ::__double2ll_rd((-b + sign * sr) / 2);
  if (bXb_cX4 != static_cast<int>(sr * sr)) {
    int llsr = ::__double2ll_rd(sr);
    int diff = ::__double2ll_ru(
        ::sqrt(::fabs(static_cast<double>(bXb_cX4 - llsr * llsr))));
    auto l = res > diff ? res - diff : 0;
    auto r = res + diff + 1;
    x <<= 1;
    while (l + 1 < r) {
      auto m = (l + r) >> 1;
      if (sign * (b + m) * m > x) {
        r = m;
      } else {
        l = m;
      }
    }
    res = l;
  }
  return res;
}

template <typename T>
__device__ inline void get_coordinate_in_triu_trapezoid(int f,
                                                        int x,
                                                        T* row,
                                                        T* col) {
  f <<= 1;  // all statements use 2f, so only calculate it once here.
  auto b = -1 - f;
  auto cX4 = x << 3;  // 4 * c = 4 * (2x) = 8x;
  *row = resolve_root_int<T>(b, cX4, x, -1);
  *col = (x - (((f - *row + 1) * *row) >> 1)) + *row;
}

template <typename T>
__global__ void triu_indices_kernel(T* out_data,
                                    int col_offset,
                                    int m_first_row,
                                    int col,
                                    int rectangle_size,
                                    int triu_size) {
  int linear_index = blockIdx.x * blockDim.x + threadIdx.x;

  if (linear_index < triu_size) {
    T r, c;
    if (linear_index < rectangle_size) {
      // the coordinate is within the top rectangle
      r = linear_index / col;
      c = linear_index % col;
    } else {
      // the coordinate falls in the bottom trapezoid
      get_coordinate_in_triu_trapezoid<T>(
          m_first_row, linear_index - rectangle_size, &r, &c);
      r += rectangle_size / col;
    }

    c += col_offset;
    out_data[linear_index] = r;
    out_data[linear_index + triu_size] = c;
  }
}

template <typename T, typename Context>
void TriuIndicesKernel(const Context& dev_ctx,
                       int row,
                       int col,
                       int offset,
                       DataType dtype,
                       DenseTensor* out) {
  T* out_data = dev_ctx.template Alloc<T>(out);
  auto out_dims = out->dims();
  int triu_size = out_dims[1];
  //  auto tensor = empty_cuda({2, triu_size}, dtype_opt, layout_opt,
  //  device_opt, pin_memory_opt);

  if (triu_size > 0) {
    // # of triu elements in the first row
    auto m_first_row = offset > 0 ? std::max<int>(col - offset, 0)
                                  :  // upper bounded by col
                           col;

    // size of the top rectangle
    int rectangle_size = 0;
    if (offset < 0) {
      rectangle_size = std::min<int>(row, -offset) * col;
    }

    //  using gpu_launch_config to get grid_size and block_size
    auto config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, triu_size);

    triu_indices_kernel<T><<<config.block_per_grid.x,
                             config.thread_per_block.x,
                             0,
                             dev_ctx.stream()>>>(out_data,
                                                 std::max<int>(0, offset),
                                                 m_first_row,
                                                 col,
                                                 rectangle_size,
                                                 triu_size);
  }
}
}  // namespace phi

PD_REGISTER_KERNEL(
    triu_indices, GPU, ALL_LAYOUT, phi::TriuIndicesKernel, int, int64_t) {}