dist_se_resnext.py 8.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import argparse
17
import six
18 19 20 21 22 23 24 25 26 27 28 29
import time
import math

import paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
from paddle.fluid import core
import unittest
from multiprocessing import Process
import os
import sys
import signal
T
typhoonzero 已提交
30
from test_dist_base import TestDistRunnerBase, runtime_main
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1

train_parameters = {
    "input_size": [3, 224, 224],
    "input_mean": [0.485, 0.456, 0.406],
    "input_std": [0.229, 0.224, 0.225],
    "learning_strategy": {
        "name": "piecewise_decay",
        "epochs": [30, 60, 90],
        "steps": [0.1, 0.01, 0.001, 0.0001]
    }
}


class SE_ResNeXt():
    def __init__(self, layers=50):
        self.params = train_parameters
        self.layers = layers

    def net(self, input, class_dim=1000):
        layers = self.layers
        supported_layers = [50, 101, 152]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(supported_layers, layers)
        if layers == 50:
            cardinality = 32
            reduction_ratio = 16
            depth = [3, 4, 6, 3]
            num_filters = [128, 256, 512, 1024]

            conv = self.conv_bn_layer(
                input=input,
                num_filters=64,
                filter_size=7,
                stride=2,
                act='relu')
            conv = fluid.layers.pool2d(
                input=conv,
                pool_size=3,
                pool_stride=2,
                pool_padding=1,
                pool_type='max')
        elif layers == 101:
            cardinality = 32
            reduction_ratio = 16
            depth = [3, 4, 23, 3]
            num_filters = [128, 256, 512, 1024]

            conv = self.conv_bn_layer(
                input=input,
                num_filters=64,
                filter_size=7,
                stride=2,
                act='relu')
            conv = fluid.layers.pool2d(
                input=conv,
                pool_size=3,
                pool_stride=2,
                pool_padding=1,
                pool_type='max')
        elif layers == 152:
            cardinality = 64
            reduction_ratio = 16
            depth = [3, 8, 36, 3]
            num_filters = [128, 256, 512, 1024]

            conv = self.conv_bn_layer(
                input=input,
                num_filters=64,
                filter_size=3,
                stride=2,
                act='relu')
            conv = self.conv_bn_layer(
                input=conv, num_filters=64, filter_size=3, stride=1, act='relu')
            conv = self.conv_bn_layer(
                input=conv,
                num_filters=128,
                filter_size=3,
                stride=1,
                act='relu')
            conv = fluid.layers.pool2d(
                input=conv, pool_size=3, pool_stride=2, pool_padding=1, \
                pool_type='max')

        for block in range(len(depth)):
            for i in range(depth[block]):
                conv = self.bottleneck_block(
                    input=conv,
                    num_filters=num_filters[block],
                    stride=2 if i == 0 and block != 0 else 1,
                    cardinality=cardinality,
                    reduction_ratio=reduction_ratio)

        pool = fluid.layers.pool2d(
            input=conv, pool_size=7, pool_type='avg', global_pooling=True)
        drop = fluid.layers.dropout(x=pool, dropout_prob=0.2)
        stdv = 1.0 / math.sqrt(drop.shape[1] * 1.0)
        out = fluid.layers.fc(input=drop, size=class_dim, act='softmax')
        return out

    def shortcut(self, input, ch_out, stride):
        ch_in = input.shape[1]
        if ch_in != ch_out or stride != 1:
            filter_size = 1
            return self.conv_bn_layer(input, ch_out, filter_size, stride)
        else:
            return input

    def bottleneck_block(self, input, num_filters, stride, cardinality,
                         reduction_ratio):
        conv0 = self.conv_bn_layer(
            input=input, num_filters=num_filters, filter_size=1, act='relu')
        conv1 = self.conv_bn_layer(
            input=conv0,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            groups=cardinality,
            act='relu')
        conv2 = self.conv_bn_layer(
            input=conv1, num_filters=num_filters * 2, filter_size=1, act=None)
        scale = self.squeeze_excitation(
            input=conv2,
            num_channels=num_filters * 2,
            reduction_ratio=reduction_ratio)

        short = self.shortcut(input, num_filters * 2, stride)

        return fluid.layers.elementwise_add(x=short, y=scale, act='relu')

    def conv_bn_layer(self,
                      input,
                      num_filters,
                      filter_size,
                      stride=1,
                      groups=1,
                      act=None):
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
M
minqiyang 已提交
176
            padding=(filter_size - 1) // 2,
177 178
            groups=groups,
            act=None,
W
Wu Yi 已提交
179 180 181
            # avoid pserver CPU init differs from GPU
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant()),
182 183 184 185 186 187 188 189
            bias_attr=False)
        return fluid.layers.batch_norm(input=conv, act=act)

    def squeeze_excitation(self, input, num_channels, reduction_ratio):
        pool = fluid.layers.pool2d(
            input=input, pool_size=0, pool_type='avg', global_pooling=True)
        stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
        squeeze = fluid.layers.fc(input=pool,
M
minqiyang 已提交
190
                                  size=num_channels // reduction_ratio,
191 192 193 194 195 196 197 198 199
                                  act='relu')
        stdv = 1.0 / math.sqrt(squeeze.shape[1] * 1.0)
        excitation = fluid.layers.fc(input=squeeze,
                                     size=num_channels,
                                     act='sigmoid')
        scale = fluid.layers.elementwise_mul(x=input, y=excitation, axis=0)
        return scale


T
typhoonzero 已提交
200 201 202 203 204 205
class DistSeResneXt2x2(TestDistRunnerBase):
    def get_model(self, batch_size=2):
        # Input data
        image = fluid.layers.data(
            name="data", shape=[3, 224, 224], dtype='float32')
        label = fluid.layers.data(name="int64", shape=[1], dtype='int64')
206

T
typhoonzero 已提交
207 208 209 210
        # Train program
        model = SE_ResNeXt(layers=50)
        out = model.net(input=image, class_dim=102)
        cost = fluid.layers.cross_entropy(input=out, label=label)
211

T
typhoonzero 已提交
212 213 214
        avg_cost = fluid.layers.mean(x=cost)
        acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
        acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)
215

T
typhoonzero 已提交
216 217
        # Evaluator
        test_program = fluid.default_main_program().clone(for_test=True)
218

T
typhoonzero 已提交
219 220 221 222
        # Optimization
        total_images = 6149  # flowers
        epochs = [30, 60, 90]
        step = int(total_images / batch_size + 1)
223

T
typhoonzero 已提交
224 225 226 227
        bd = [step * e for e in epochs]
        base_lr = 0.1
        lr = []
        lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
228

T
typhoonzero 已提交
229 230 231 232 233 234 235 236
        optimizer = fluid.optimizer.Momentum(
            # FIXME(typhoonzero): add back LR decay once ParallelExecutor fixed.
            #learning_rate=fluid.layers.piecewise_decay(
            #    boundaries=bd, values=lr),
            learning_rate=base_lr,
            momentum=0.9,
            regularization=fluid.regularizer.L2Decay(1e-4))
        optimizer.minimize(avg_cost)
237

T
typhoonzero 已提交
238 239 240 241 242
        # Reader
        train_reader = paddle.batch(
            paddle.dataset.flowers.train(), batch_size=batch_size)
        test_reader = paddle.batch(
            paddle.dataset.flowers.test(use_xmap=False), batch_size=batch_size)
243

T
typhoonzero 已提交
244
        return test_program, avg_cost, train_reader, test_reader, acc_top1, out
245 246 247


if __name__ == "__main__":
T
typhoonzero 已提交
248
    runtime_main(DistSeResneXt2x2)