test_callbacks.py 4.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import sys
16 17 18 19 20
import unittest
import time
import random
import tempfile
import shutil
21
import paddle
22

23 24 25 26
from paddle import Model
from paddle.static import InputSpec
from paddle.vision.models import LeNet
from paddle.hapi.callbacks import config_callbacks
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41


class TestCallbacks(unittest.TestCase):
    def setUp(self):
        self.save_dir = tempfile.mkdtemp()

    def tearDown(self):
        shutil.rmtree(self.save_dir)

    def run_callback(self):
        epochs = 2
        steps = 50
        freq = 2
        eval_steps = 20

42
        inputs = [InputSpec([None, 1, 28, 28], 'float32', 'image')]
43 44
        lenet = Model(LeNet(), inputs)
        lenet.prepare()
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

        cbks = config_callbacks(
            model=lenet,
            batch_size=128,
            epochs=epochs,
            steps=steps,
            log_freq=freq,
            verbose=self.verbose,
            metrics=['loss', 'acc'],
            save_dir=self.save_dir)
        cbks.on_begin('train')

        logs = {'loss': 50.341673, 'acc': 0.00256}
        for epoch in range(epochs):
            cbks.on_epoch_begin(epoch)
            for step in range(steps):
                cbks.on_batch_begin('train', step, logs)
                logs['loss'] -= random.random() * 0.1
                logs['acc'] += random.random() * 0.1
                time.sleep(0.005)
                cbks.on_batch_end('train', step, logs)
            cbks.on_epoch_end(epoch, logs)

            eval_logs = {'eval_loss': 20.341673, 'eval_acc': 0.256}
            params = {
                'steps': eval_steps,
                'metrics': ['eval_loss', 'eval_acc'],
            }
            cbks.on_begin('eval', params)
            for step in range(eval_steps):
                cbks.on_batch_begin('eval', step, eval_logs)
                eval_logs['eval_loss'] -= random.random() * 0.1
                eval_logs['eval_acc'] += random.random() * 0.1
                eval_logs['batch_size'] = 2
                time.sleep(0.005)
                cbks.on_batch_end('eval', step, eval_logs)
            cbks.on_end('eval', eval_logs)

            test_logs = {}
            params = {'steps': eval_steps}
            cbks.on_begin('test', params)
            for step in range(eval_steps):
                cbks.on_batch_begin('test', step, test_logs)
                test_logs['batch_size'] = 2
                time.sleep(0.005)
                cbks.on_batch_end('test', step, test_logs)
            cbks.on_end('test', test_logs)

        cbks.on_end('train')

    def test_callback_verbose_0(self):
        self.verbose = 0
        self.run_callback()

    def test_callback_verbose_1(self):
        self.verbose = 1
        self.run_callback()

    def test_callback_verbose_2(self):
        self.verbose = 2
        self.run_callback()

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    def test_visualdl_callback(self):
        # visualdl not support python3
        if sys.version_info < (3, ):
            return

        inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
        labels = [InputSpec([None, 1], 'int64', 'label')]

        train_dataset = paddle.vision.datasets.MNIST(mode='train')
        eval_dataset = paddle.vision.datasets.MNIST(mode='test')

        net = paddle.vision.LeNet()
        model = paddle.Model(net, inputs, labels)

        optim = paddle.optimizer.Adam(0.001, parameters=net.parameters())
        model.prepare(
            optimizer=optim,
            loss=paddle.nn.CrossEntropyLoss(),
            metrics=paddle.metric.Accuracy())

        callback = paddle.callbacks.VisualDL(log_dir='visualdl_log_dir')
        model.fit(train_dataset,
                  eval_dataset,
                  batch_size=64,
                  callbacks=callback)

133 134 135

if __name__ == '__main__':
    unittest.main()