executor.cc 18.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/executor.h"
S
sneaxiy 已提交
16
#include <deque>
17
#include <memory>
18
#include <unordered_map>
19
#include <unordered_set>
S
sneaxiy 已提交
20
#include <utility>
D
dongdaxiang 已提交
21 22 23
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"
Y
Yi Wang 已提交
24 25 26 27 28
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
D
dongdaxiang 已提交
29 30
#include "paddle/fluid/framework/trainer_desc.pb.h"
#include "paddle/fluid/framework/trainer_factory.h"
31
#include "paddle/fluid/framework/transfer_scope_cache.h"
W
Wang Guibao 已提交
32
#include "paddle/fluid/framework/variable_helper.h"
S
sneaxiy 已提交
33
#include "paddle/fluid/operators/controlflow/while_op_helper.h"
W
Wu Yi 已提交
34
#include "paddle/fluid/operators/distributed/distributed.h"
Y
Yi Wang 已提交
35
#include "paddle/fluid/platform/place.h"
X
Xin Pan 已提交
36
#include "paddle/fluid/platform/profiler.h"
Y
Yang Yu 已提交
37

38
#ifdef PADDLE_WITH_NGRAPH
B
baojun 已提交
39
#include "paddle/fluid/operators/ngraph/ngraph_engine.h"
40
DEFINE_bool(use_ngraph, false, "Use NGRAPH to run");
41 42
#endif

D
dzhwinter 已提交
43
DECLARE_bool(benchmark);
44
DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run");
Q
qijun 已提交
45 46 47

namespace paddle {
namespace framework {
X
Xin Pan 已提交
48 49 50 51 52
namespace {
// block id starts from 0. This id is used to represent the codeblock
// wrapping the first block 0.
int kProgramId = -1;
}  // namespace
Q
qijun 已提交
53

Q
Qiao Longfei 已提交
54
ExecutorPrepareContext::ExecutorPrepareContext(
S
sneaxiy 已提交
55 56 57 58 59 60 61 62
    const framework::ProgramDesc& prog, size_t block_id)
    : prog_(prog), block_id_(block_id) {}

void ExecutorPrepareContext::PrepareUnusedVars(
    const std::vector<std::string>& keep_vars, bool force_disable_gc) {
  force_disable_gc_ = force_disable_gc;
  if (GetEagerDeletionThreshold() < 0 || force_disable_gc_) {
    return;
S
sneaxiy 已提交
63
  }
S
sneaxiy 已提交
64
  unused_vars_ = GetUnusedVars(prog_.Block(block_id_), ops_, keep_vars);
S
sneaxiy 已提交
65
}
Y
Yu Yang 已提交
66

Q
Qiao Longfei 已提交
67
ExecutorPrepareContext::~ExecutorPrepareContext() {
M
minqiyang 已提交
68
  VLOG(5) << "destroy ExecutorPrepareContext";
Q
Qiao Longfei 已提交
69
}
Y
Yu Yang 已提交
70

D
dzhwinter 已提交
71
Executor::Executor(const platform::Place& place) : place_(place) {}
Q
qijun 已提交
72

Y
Yancey1989 已提交
73
void Executor::Close() {
W
Wu Yi 已提交
74
#ifdef PADDLE_WITH_DISTRIBUTE
W
Wu Yi 已提交
75 76
  // TODO(typhoonzero): complete message will need to use real trainer_id,
  // except 0.
77 78 79
  auto client =
      paddle::operators::distributed::RPCClient::GetInstance<RPCCLIENT_T>(0);
  client->SendComplete();
W
Wu Yi 已提交
80
#endif
Y
Yancey1989 已提交
81
}
W
Wu Yi 已提交
82

L
Liu Yiqun 已提交
83 84 85
void Executor::CreateVariables(const ProgramDesc& pdesc, Scope* scope,
                               int block_id) {
  auto& global_block = pdesc.Block(block_id);
86 87 88 89 90 91 92 93 94 95 96 97 98 99

  const Scope* ancestor_scope = scope;
  while (ancestor_scope->parent()) {
    ancestor_scope = ancestor_scope->parent();
  }

  if (ancestor_scope != scope) {
    for (auto& var : global_block.AllVars()) {
      if (var->Name() == framework::kEmptyVarName) {
        continue;
      }

      if (var->Persistable()) {
        auto* ptr = const_cast<Scope*>(ancestor_scope)->Var(var->Name());
100
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
101 102
        VLOG(3) << "Create Variable " << var->Name()
                << " global, which pointer is " << ptr;
103 104
      } else {
        auto* ptr = scope->Var(var->Name());
105
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
106 107
        VLOG(3) << "Create Variable " << var->Name()
                << " locally, which pointer is " << ptr;
108 109 110 111 112
      }
    }
  } else {
    for (auto& var : global_block.AllVars()) {
      auto* ptr = scope->Var(var->Name());
113
      InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
114 115
      VLOG(3) << "Create variable " << var->Name() << ", which pointer is "
              << ptr;
116 117 118 119
    }
  }
}

D
dongdaxiang 已提交
120
void Executor::RunFromDataset(const ProgramDesc& main_program, Scope* scope,
X
xujiaqi01 已提交
121
                              Dataset* dataset,
D
dongdaxiang 已提交
122
                              const std::string& trainer_desc_str) {
D
dongdaxiang 已提交
123 124
  VLOG(3) << "Start to RunFromDataset in executor";
  TrainerDesc trainer_desc;
125 126 127
  bool success = trainer_desc.ParseFromString(trainer_desc_str);
  PADDLE_ENFORCE(success, "Fail to parse TrainerDesc from string:\n%s",
                 trainer_desc_str.c_str());
D
dongdaxiang 已提交
128 129 130 131 132 133 134 135
  VLOG(3) << "Going to create trainer, trainer class is "
          << trainer_desc.class_name();
  std::shared_ptr<TrainerBase> trainer;
  trainer = TrainerFactory::CreateTrainer(trainer_desc.class_name());
  // initialize trainer
  VLOG(3) << "Going to initialize trainer";
  trainer->Initialize(trainer_desc, dataset);
  VLOG(3) << "Set root scope here";
D
dongdaxiang 已提交
136
  trainer->SetScope(scope);
D
dongdaxiang 已提交
137 138 139 140 141 142 143 144 145 146 147 148
  // prepare training environment and helper environment
  VLOG(3) << "Try to init train environment";
  trainer->InitTrainerEnv(main_program, place_);
  VLOG(3) << "Try to init other environment";
  trainer->InitOtherEnv(main_program);
  // training and finalize training
  VLOG(3) << "Trainer starts to run";
  trainer->Run();
  VLOG(3) << "Trainer going to finalize";
  trainer->Finalize();
  return;
}
D
dongdaxiang 已提交
149

Y
Yu Yang 已提交
150
void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
S
sneaxiy 已提交
151 152 153
                   bool create_local_scope, bool create_vars,
                   const std::vector<std::string>& skip_ref_cnt_vars,
                   bool force_disable_gc) {
X
Xin Pan 已提交
154
  platform::RecordBlock b(block_id);
155
  if (FLAGS_use_mkldnn) EnableMKLDNN(pdesc);
S
sneaxiy 已提交
156
  auto ctx = Prepare(pdesc, block_id, skip_ref_cnt_vars, force_disable_gc);
Q
Qiao Longfei 已提交
157
  RunPreparedContext(ctx.get(), scope, create_local_scope, create_vars);
Q
qijun 已提交
158 159
}

160 161 162 163 164 165 166
// Check whether the block already has feed operators and feed_holder.
// Return false if the block does not have any feed operators.
// If some feed operators have been prepended to the block, check that
// the info contained in these feed operators matches the feed_targets
// and feed_holder_name. Raise exception when any mismatch is found.
// Return true if the block has feed operators and holder of matching info.
static bool has_feed_operators(
167
    const BlockDesc& block,
L
Liu Yiqun 已提交
168
    const std::map<std::string, const LoDTensor*>& feed_targets,
169 170
    const std::string& feed_holder_name) {
  size_t feed_count = 0;
171
  for (auto* op : block.AllOps()) {
172 173
    if (op->Type() == kFeedOpType) {
      feed_count++;
L
Liu Yiqun 已提交
174
      // The input variable's name of feed_op should be feed_holder_name.
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
      PADDLE_ENFORCE_EQ(op->Input("X")[0], feed_holder_name,
                        "Input to feed op should be '%s'", feed_holder_name);
      std::string feed_target_name = op->Output("Out")[0];
      PADDLE_ENFORCE(
          feed_targets.find(feed_target_name) != feed_targets.end(),
          "Feed operator output name '%s' cannot be found in 'feed_targets'",
          feed_target_name);
    }
  }

  if (feed_count > 0) {
    PADDLE_ENFORCE_EQ(
        feed_count, feed_targets.size(),
        "The number of feed operators should match 'feed_targets'");

190
    if (!feed_holder_name.empty()) {
L
Liu Yiqun 已提交
191
      // When feed operator are present, so should be feed_holder.
192 193 194 195 196 197 198
      auto var = block.FindVar(feed_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              feed_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FEED_MINIBATCH,
                        "'%s' variable should be 'FEED_MINIBATCH' type",
                        feed_holder_name);
    }
199 200 201 202 203 204 205 206 207 208 209 210
  }

  return feed_count > 0;
}

// Check whether the block already has fetch operators and fetch_holder.
// Return false if the block does not have any fetch operators.
// If some fetch operators have been appended to the block, check that
// the info contained in these fetch operators matches the fetch_targets
// and fetch_holder_name. Raise exception when any mismatch is found.
// Return true if the block has fetch operators and holder of matching info.
static bool has_fetch_operators(
L
Liu Yiqun 已提交
211 212
    const BlockDesc& block,
    const std::map<std::string, LoDTensor*>& fetch_targets,
213 214
    const std::string& fetch_holder_name) {
  size_t fetch_count = 0;
215
  for (auto* op : block.AllOps()) {
216 217
    if (op->Type() == kFetchOpType) {
      fetch_count++;
L
Liu Yiqun 已提交
218
      // The output variable's name of fetch_op should be fetch_holder_name.
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
      PADDLE_ENFORCE_EQ(op->Output("Out")[0], fetch_holder_name,
                        "Output of fetch op should be '%s'", fetch_holder_name);
      std::string fetch_target_name = op->Input("X")[0];
      PADDLE_ENFORCE(
          fetch_targets.find(fetch_target_name) != fetch_targets.end(),
          "Fetch operator input name '%s' cannot be found in 'fetch_targets'",
          fetch_target_name);
    }
  }

  if (fetch_count > 0) {
    PADDLE_ENFORCE_EQ(
        fetch_count, fetch_targets.size(),
        "The number of fetch operators should match 'fetch_targets'");

234
    if (!fetch_holder_name.empty()) {
L
Liu Yiqun 已提交
235
      // When fetch operator are present, so should be fetch_holder.
236 237 238 239 240 241 242
      auto var = block.FindVar(fetch_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              fetch_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FETCH_LIST,
                        "'%s' variable should be 'FETCH_LIST' type",
                        fetch_holder_name);
    }
243 244 245 246 247
  }

  return fetch_count > 0;
}

248 249 250
std::unique_ptr<ExecutorPrepareContext> Executor::PrepareCtxCache(
    const ProgramDesc& program, int block_id,
    const std::vector<std::string>& skip_ref_cnt_vars, bool force_disable_gc) {
251
  return Prepare(program, block_id, skip_ref_cnt_vars, force_disable_gc);
252 253
}

254
void Executor::Run(const ProgramDesc& program, Scope* scope,
255 256
                   std::map<std::string, const LoDTensor*>* feed_targets,
                   std::map<std::string, LoDTensor*>* fetch_targets,
W
Wu Yi 已提交
257 258
                   bool create_local_scope, bool create_vars,
                   const std::string& feed_holder_name,
259
                   const std::string& fetch_holder_name) {
X
Xin Pan 已提交
260
  platform::RecordBlock b(kProgramId);
261
  if (FLAGS_use_mkldnn) EnableMKLDNN(program);
262
  bool has_feed_ops =
263
      has_feed_operators(program.Block(0), *feed_targets, feed_holder_name);
264
  bool has_fetch_ops =
265
      has_fetch_operators(program.Block(0), *fetch_targets, fetch_holder_name);
266 267

  ProgramDesc* copy_program = const_cast<ProgramDesc*>(&program);
S
sneaxiy 已提交
268
  std::unique_ptr<ProgramDesc> unique_ptr_of_copy_program;
269
  if (!has_feed_ops || !has_fetch_ops) {
S
sneaxiy 已提交
270 271
    unique_ptr_of_copy_program.reset(new ProgramDesc(program));
    copy_program = unique_ptr_of_copy_program.get();
272
  }
273 274
  auto* global_block = copy_program->MutableBlock(0);

275
  if (!has_feed_ops) {
276 277
    // create feed_holder variable
    auto* feed_holder = global_block->Var(feed_holder_name);
278
    feed_holder->SetType(proto::VarType::FEED_MINIBATCH);
279 280 281
    feed_holder->SetPersistable(true);

    int i = 0;
282
    for (auto& feed_target : (*feed_targets)) {
283
      std::string var_name = feed_target.first;
M
minqiyang 已提交
284
      VLOG(3) << "feed target's name: " << var_name;
285 286 287 288 289 290 291 292 293 294 295 296 297

      // prepend feed op
      auto* op = global_block->PrependOp();
      op->SetType(kFeedOpType);
      op->SetInput("X", {feed_holder_name});
      op->SetOutput("Out", {var_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

298
  if (!has_fetch_ops) {
299 300
    // create fetch_holder variable
    auto* fetch_holder = global_block->Var(fetch_holder_name);
301
    fetch_holder->SetType(proto::VarType::FETCH_LIST);
302 303 304
    fetch_holder->SetPersistable(true);

    int i = 0;
305
    for (auto& fetch_target : (*fetch_targets)) {
306
      std::string var_name = fetch_target.first;
M
minqiyang 已提交
307
      VLOG(3) << "fetch target's name: " << var_name;
308 309 310 311 312 313 314 315 316 317 318 319 320

      // append fetch op
      auto* op = global_block->AppendOp();
      op->SetType(kFetchOpType);
      op->SetInput("X", {var_name});
      op->SetOutput("Out", {fetch_holder_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

321
  auto ctx = Prepare(*copy_program, 0);
W
Wu Yi 已提交
322 323 324
  RunPreparedContext(ctx.get(), scope, feed_targets, fetch_targets,
                     create_local_scope, create_vars, feed_holder_name,
                     fetch_holder_name);
325 326
}

Q
Qiao Longfei 已提交
327
std::unique_ptr<ExecutorPrepareContext> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
328
    const ProgramDesc& program, int block_id,
S
sneaxiy 已提交
329
    const std::vector<std::string>& skip_ref_cnt_vars, bool force_disable_gc) {
S
sneaxiy 已提交
330 331
  std::unique_ptr<ExecutorPrepareContext> ctx(
      new ExecutorPrepareContext(program, block_id));
Y
Yu Yang 已提交
332 333 334 335 336
  PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), program.Size());
  auto& block = program.Block(block_id);
  for (auto& op_desc : block.AllOps()) {
    ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
  }
337
#ifdef PADDLE_WITH_NGRAPH
338
  if (FLAGS_use_ngraph && ctx->block_id_ == 0) {
339 340 341 342
    paddle::operators::NgraphEngine::FuseNgraphOps(
        ctx->prog_.Block(ctx->block_id_), &ctx->ops_);
  }
#endif
S
sneaxiy 已提交
343
  ctx->PrepareUnusedVars(skip_ref_cnt_vars, force_disable_gc);
Q
Qiyang Min 已提交
344
  return ctx;
Y
Yu Yang 已提交
345 346
}

T
refine  
typhoonzero 已提交
347
std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
348
    const ProgramDesc& program, const std::vector<int>& block_ids,
S
sneaxiy 已提交
349 350
    const std::vector<std::vector<std::string>>& skip_ref_cnt_vars,
    bool force_disable_gc) {
S
fix bug  
sneaxiy 已提交
351 352 353 354
  PADDLE_ENFORCE(
      skip_ref_cnt_vars.empty() || skip_ref_cnt_vars.size() == block_ids.size(),
      "skip_ref_cnt_vars should be either empty or equals to block number %d",
      block_ids.size());
T
typhoonzero 已提交
355
  std::vector<std::shared_ptr<ExecutorPrepareContext>> result;
S
fix bug  
sneaxiy 已提交
356
  size_t idx = 0;
T
typhoonzero 已提交
357 358
  for (auto& bid : block_ids) {
    PADDLE_ENFORCE_LT(static_cast<size_t>(bid), program.Size());
S
sneaxiy 已提交
359
    auto* ctx = new ExecutorPrepareContext(program, bid);
T
typhoonzero 已提交
360 361 362 363
    auto& block = program.Block(bid);
    for (auto& op_desc : block.AllOps()) {
      ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
    }
S
sneaxiy 已提交
364 365 366 367 368
    if (skip_ref_cnt_vars.empty()) {
      ctx->PrepareUnusedVars(std::vector<std::string>(), force_disable_gc);
    } else {
      ctx->PrepareUnusedVars(skip_ref_cnt_vars[idx], force_disable_gc);
    }
T
typhoonzero 已提交
369
    result.push_back(std::shared_ptr<ExecutorPrepareContext>(ctx));
S
fix bug  
sneaxiy 已提交
370
    ++idx;
T
typhoonzero 已提交
371 372 373 374
  }
  return result;
}

Y
Yu Yang 已提交
375
void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
Q
qiaolongfei 已提交
376 377
                                  bool create_local_scope, bool create_vars,
                                  bool keep_kids) {
378
  platform::RecordBlock b(kProgramId);
379
  PADDLE_ENFORCE_NOT_NULL(scope);
Y
Yu Yang 已提交
380 381 382 383
  Scope* local_scope = scope;
  if (create_vars) {
    if (create_local_scope) {
      local_scope = &scope->NewScope();
384 385
    }
    CreateVariables(ctx->prog_, local_scope, ctx->block_id_);
L
Liu Yiqun 已提交
386
  }
Y
Yu Yang 已提交
387

S
sneaxiy 已提交
388
  int64_t max_memory_size = GetEagerDeletionThreshold();
S
sneaxiy 已提交
389
  std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
390 391 392
  // FIXME(zjl): recurrent_op is rather complex, we would
  // disable gc forcely in recurrent_op
  if (!ctx->force_disable_gc_ && max_memory_size >= 0) {
S
sneaxiy 已提交
393 394
#ifdef PADDLE_WITH_CUDA
    if (platform::is_gpu_place(place_)) {
S
fix bug  
sneaxiy 已提交
395
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
396
        gc.reset(new UnsafeFastGPUGarbageCollector(
S
fix bug  
sneaxiy 已提交
397 398
            boost::get<platform::CUDAPlace>(place_), max_memory_size));
      } else {
S
sneaxiy 已提交
399
        gc.reset(new DefaultStreamGarbageCollector(
S
fix bug  
sneaxiy 已提交
400 401 402
            boost::get<platform::CUDAPlace>(place_), max_memory_size));
      }
    } else if (platform::is_cpu_place(place_)) {
S
sneaxiy 已提交
403
#endif
S
sneaxiy 已提交
404 405
      gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place_),
                                       max_memory_size));
S
sneaxiy 已提交
406 407 408
#ifdef PADDLE_WITH_CUDA
    }
#endif
S
sneaxiy 已提交
409 410
    // If gc is enabled and block size > 1
    if (gc && ctx->prog_.Size() > 1) {
S
sneaxiy 已提交
411 412 413
      operators::PrepareSafeEagerDeletionOnWhileOpAndWhileGradOp(ctx->block_id_,
                                                                 ctx->ops_);
    }
S
sneaxiy 已提交
414 415
  }

Y
Yu Yang 已提交
416
  for (auto& op : ctx->ops_) {
417
    op->Run(*local_scope, place_);
S
fix bug  
sneaxiy 已提交
418
    if (gc) {
S
sneaxiy 已提交
419
      DeleteUnusedTensors(*local_scope, op.get(), ctx->unused_vars_, gc.get());
S
sneaxiy 已提交
420
    }
Y
Yu Yang 已提交
421
  }
S
sneaxiy 已提交
422

S
fix bug  
sneaxiy 已提交
423
  platform::DeviceContextPool::Instance().Get(place_)->Wait();
S
sneaxiy 已提交
424

Q
qiaolongfei 已提交
425
  if (local_scope != scope) {
Y
Yu Yang 已提交
426
    scope->DeleteScope(local_scope);
427
  } else {
Q
qiaolongfei 已提交
428 429 430 431 432
    if (!keep_kids) {
      // By default, we should delete all kid scopes after run executor because
      // some operators may create local scope when running, such as while_op.
      // But when while_op also create a local executor to run it's sub block,
      // the sub scopes it created should not be dropped immediately, because
Q
qiaolongfei 已提交
433 434
      // while_grad_op will use some variables created during while_op run, so
      // we need to keep the kids and wait for the outer executor to drop them.
Q
qiaolongfei 已提交
435 436
      scope->DropKids();
    }
Y
Yu Yang 已提交
437 438 439
  }
}

440 441
void Executor::RunPreparedContext(
    ExecutorPrepareContext* ctx, Scope* scope,
442
    std::map<std::string, const LoDTensor*>* feed_targets,
W
Wu Yi 已提交
443 444 445
    std::map<std::string, LoDTensor*>* fetch_targets, bool create_local_scope,
    bool create_vars, const std::string& feed_holder_name,
    const std::string& fetch_holder_name) {
446 447
  auto& global_block = ctx->prog_.Block(ctx->block_id_);

448
  PADDLE_ENFORCE(
449
      has_feed_operators(global_block, *feed_targets, feed_holder_name),
450 451
      "Program in ExecutorPrepareContext should has feed_ops.");
  PADDLE_ENFORCE(
452
      has_fetch_operators(global_block, *fetch_targets, fetch_holder_name),
453 454
      "Program in the prepared context should has fetch_ops.");

455 456 457 458 459
  // map the data of feed_targets to feed_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFeedOpType) {
      std::string feed_target_name = op->Output("Out")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
460 461
      SetFeedVariable(scope, *(*feed_targets)[feed_target_name],
                      feed_holder_name, idx);
462 463 464
    }
  }

W
Wu Yi 已提交
465
  RunPreparedContext(ctx, scope, create_local_scope, create_vars);
466 467 468 469 470 471

  // obtain the data of fetch_targets from fetch_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFetchOpType) {
      std::string fetch_target_name = op->Input("X")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
472
      *(*fetch_targets)[fetch_target_name] =
473 474 475 476 477
          GetFetchVariable(*scope, fetch_holder_name, idx);
    }
  }
}

478 479
void Executor::EnableMKLDNN(const ProgramDesc& program) {
#ifdef PADDLE_WITH_MKLDNN
M
minqiyang 已提交
480
  VLOG(3) << "use_mkldnn=True";
481 482 483 484 485 486 487 488
  for (size_t bid = 0; bid < program.Size(); ++bid) {
    auto* block = const_cast<ProgramDesc&>(program).MutableBlock(bid);
    for (auto* op : block->AllOps()) {
      if (op->HasAttr("use_mkldnn")) {
        op->SetAttr("use_mkldnn", true);
      }
    }
  }
489 490 491
#else
  LOG(WARNING)
      << "'MKLDNN' is not supported, Please re-compile with WITH_MKLDNN option";
492 493
#endif
}
Q
qijun 已提交
494 495
}  // namespace framework
}  // namespace paddle