test_auto_parallel_partitioner.py 53.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import unittest.mock
from io import StringIO
import numpy as np

import paddle
import paddle.nn as nn
import paddle.static as static
import paddle.nn.functional as F
import paddle.utils as utils
import paddle.tensor as tensor
from paddle.fluid import layers
from paddle.nn.layer.transformer import _convert_param_attr_to_list
import paddle.distributed.auto_parallel as auto
31
from paddle.distributed.auto_parallel.completion import Completer
32
from paddle.distributed.auto_parallel.utils import check_distributed_attr_for_program
33
from paddle.distributed.auto_parallel.utils import print_program_with_dist_attr
34
from paddle.distributed.auto_parallel.utils import append_distributed_attr_suffix
35
from paddle.distributed.auto_parallel.dist_context import DistributedContext
36 37 38
from paddle.distributed import fleet
from paddle.distributed.auto_parallel.partitioner import Partitioner
from paddle.distributed.auto_parallel.utils import _get_comm_group
39
from paddle.distributed.auto_parallel.process_group import new_process_group
40 41

paddle.enable_static()
42
_global_parallel_strategy = None
43 44 45 46 47 48 49 50
_global_process_mesh = None


def get_programs(annotated_func):
    train_program = static.Program()
    start_program = static.Program()
    dist_context = DistributedContext()
    global _global_process_mesh
51
    dist_context.process_mesh = _global_process_mesh
52
    train_program, start_program = annotated_func(train_program, start_program)
53 54 55
    completer = Completer(dist_context)
    complete_train_program = completer.complete_forward_annotation(
        train_program)
56
    dist_context.block_state.parse_forward_blocks(complete_train_program)
57 58 59

    rank_id = 3
    dist_strategy = fleet.DistributedStrategy()
60 61 62
    partitioner = Partitioner(dist_context, rank_id)
    test_auto_parallel_dist_main_prog, test_auto_parallel_dist_startup_prog, _ = partitioner.partition(
        complete_train_program, start_program, [])
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

    return complete_train_program, start_program, test_auto_parallel_dist_main_prog, test_auto_parallel_dist_startup_prog, dist_context


def is_all_parameters_shape_equal(prog1, prog2):

    params1 = prog1.all_parameters()
    params2 = prog2.all_parameters()
    params1.sort(key=lambda x: x.name)
    params2.sort(key=lambda x: x.name)
    shape1 = [tensor.shape for tensor in params1]
    shape2 = [tensor.shape for tensor in params2]

    if len(shape1) != len(shape2):
        return False
    for i in range(len(shape1)):
        if shape1[i] != shape2[i]:
            return False
    return True


def check_tensor_split(prog1, varnames1, prog2, varnames2, axis, nsplit):

    for i in range(len(varnames1)):
        var1 = prog1.global_block().var(varnames1[i])
        var2 = prog2.global_block().var(varnames2[i])
        if var1.shape[axis] != (var2.shape[axis] // nsplit):
            return False

    return True


def initialization_check(mode, dist_context, dist_startup_prog,
96 97
                         serial_startup_prog, var_need_broadcast, process_mesh,
                         mp_parallel_axis, dp_parallel_axis):
98
    if 'mp' in mode:
99 100 101
        group_ranks = _get_comm_group(process_mesh.processes,
                                      process_mesh.topology, mp_parallel_axis,
                                      3)
102 103
        mp_ring_id = new_process_group(group_ranks).id
        broadcast_ops = [
104 105
            op for op in dist_startup_prog.global_block().ops if
            (op.type == "c_broadcast" and op.desc.attr("ring_id") == mp_ring_id)
106 107 108 109 110 111 112
        ]
        broadcast_varnames = sorted(
            [op.desc.output_arg_names()[0] for op in broadcast_ops])
        if broadcast_varnames != var_need_broadcast:
            return False

    if 'dp' in mode:
113 114 115
        group_ranks = _get_comm_group(process_mesh.processes,
                                      process_mesh.topology, dp_parallel_axis,
                                      3)
116 117 118
        dp_ring_id = new_process_group(group_ranks).id
        nparam = len(serial_startup_prog.all_parameters())
        nbroadcast_dp = len([
119 120
            op for op in dist_startup_prog.global_block().ops if
            (op.type == "c_broadcast" and op.desc.attr("ring_id") == dp_ring_id)
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
        ])
        if nparam != nbroadcast_dp:
            return False

    if "dp" in mode and 'mp' in mode:
        nbroadcast = len([
            op for op in dist_startup_prog.global_block().ops
            if op.type == "c_broadcast"
        ])
        if len(var_need_broadcast) + nbroadcast_dp != nbroadcast:
            return False

    return True


136 137 138
def get_input_var_dist_attr(op, main_program, dist_context):
    varname = op.desc.input_arg_names()
    var = main_program.global_block().var(varname[0])
139
    dist_attr = dist_context.get_tensor_dist_attr_for_program(var)
140 141 142 143 144 145
    return dist_attr


def get_output_var_dist_attr(op, main_program, dist_context):
    varname = op.desc.output_arg_names()
    var = main_program.global_block().var(varname[0])
146
    dist_attr = dist_context.get_tensor_dist_attr_for_program(var)
147 148 149 150 151
    return dist_attr


def check_equal_var_dist_attr(serial_dist_attr, dist_attr):
    equal = True
152 153
    if serial_dist_attr.process_mesh != dist_attr.process_mesh or \
        serial_dist_attr.dims_mapping != dist_attr.dims_mapping:
154 155 156 157 158 159 160 161
        equal = False
    return equal


def check_equal_dist_op_attr(dist_context, dist_main_prog, serial_op, dist_ops,
                             dist_op_idx):
    equal = True
    # get serial op's process_mesh and impl_idx
162 163 164
    serial_op_dist_attr = dist_context.get_op_dist_attr_for_program(serial_op)
    serial_process_mesh = serial_op_dist_attr.process_mesh
    serial_impl_idx = serial_op_dist_attr.impl_idx
165 166 167

    # check dist_attr between serial op and dist op
    for i in dist_op_idx:
168
        op_dist_attr = dist_context.get_op_dist_attr_for_program(dist_ops[i])
169 170
        for in_varname in dist_ops[i].desc.input_arg_names():
            in_var = dist_main_prog.global_block().var(in_varname)
171
            tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(
172
                in_var)
173
            tensor_dims_mapping = tensor_dist_attr.dims_mapping
174 175 176 177 178 179
            in_var_dims_mapping = op_dist_attr.get_input_dims_mapping(
                in_varname)
            if tensor_dims_mapping != in_var_dims_mapping:
                equal = False
        for out_varname in dist_ops[i].desc.output_arg_names():
            out_var = dist_main_prog.global_block().var(out_varname)
180
            tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(
181
                out_var)
182
            tensor_dims_mapping = tensor_dist_attr.dims_mapping
183 184 185 186
            out_var_dims_mapping = op_dist_attr.get_output_dims_mapping(
                out_varname)
            if tensor_dims_mapping != out_var_dims_mapping:
                equal = False
187 188
        dist_op_process_mesh = op_dist_attr.process_mesh
        dist_op_impl_idx = op_dist_attr.impl_idx
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
        if serial_op.desc.id() == dist_ops[i].desc.id() or \
            serial_process_mesh != dist_op_process_mesh or \
            serial_impl_idx != dist_op_impl_idx:
            equal = False

    return equal


def distributed_attr_check_for_dist_op(serial_main_prog, dist_main_prog,
                                       dist_context, serial_op_idx,
                                       dist_op_idx):

    equal = True
    serial_ops = serial_main_prog.global_block().ops
    dist_ops = dist_main_prog.global_block().ops

    for i in range(len(serial_op_idx)):
        serial_op = serial_ops[serial_op_idx[i]]
        dist_op_0 = dist_ops[dist_op_idx[i][0]]
        if dist_op_0.type == "c_identity":
            # serial op input's dist_attr
            serial_in_dist_attr = get_input_var_dist_attr(
                serial_op, serial_main_prog, dist_context)
            # c_identity output's(new var) dist_attr
            identity_out_dist_attr = get_output_var_dist_attr(
                dist_op_0, dist_main_prog, dist_context)
            # check var dist_attr
            equal = check_equal_var_dist_attr(serial_in_dist_attr,
                                              identity_out_dist_attr)
        else:
            # serial op output's dist_attr
            serial_out_dist_attr = get_output_var_dist_attr(
                serial_op, serial_main_prog, dist_context)
            # dist op output's(new var) dist_attr
            out_dist_attr = get_output_var_dist_attr(dist_op_0, dist_main_prog,
                                                     dist_context)
            # check var dist_attr
            equal = check_equal_var_dist_attr(serial_out_dist_attr,
                                              out_dist_attr)

229
        # check op's dist_attr
230 231 232 233 234 235 236 237 238 239
        equal = check_equal_dist_op_attr(dist_context, dist_main_prog,
                                         serial_op, dist_ops, dist_op_idx[i])

    return equal


def distributed_attr_check_for_program(dist_main_prog, dist_context):
    have_dist_attr = True
    for block in dist_main_prog.blocks:
        for tensor in block.vars.values():
240
            var_dist_attr = dist_context.get_tensor_dist_attr_for_program(
241 242 243 244 245
                tensor)
            if var_dist_attr is None:
                have_dist_attr = False

        for op in block.ops:
246
            op_dist_attr = dist_context.get_op_dist_attr_for_program(op)
247 248 249 250 251 252
            if op_dist_attr is None:
                have_dist_attr = False

    return have_dist_attr


253
class MLPLayer(nn.Layer):
254

255 256 257 258 259 260 261 262
    def __init__(self,
                 hidden_size=1024,
                 intermediate_size=4 * 1024,
                 dropout_ratio=0.1,
                 initializer_range=0.02):
        super(MLPLayer, self).__init__()
        d_model = hidden_size
        dim_feedforward = intermediate_size
263 264
        weight_attr = paddle.ParamAttr(
            initializer=nn.initializer.Normal(mean=0.0, std=initializer_range))
265 266
        bias_attr = None

267 268 269 270 271 272 273 274
        self.linear0 = nn.Linear(d_model,
                                 dim_feedforward,
                                 weight_attr,
                                 bias_attr=bias_attr)
        self.linear1 = nn.Linear(dim_feedforward,
                                 d_model,
                                 weight_attr,
                                 bias_attr=bias_attr)
275 276 277 278
        self.norm = nn.LayerNorm(d_model, epsilon=1e-5)
        self.dropout = nn.Dropout(dropout_ratio, mode="upscale_in_train")

    def forward(self, input):
279
        if _global_parallel_strategy == "mp":
280 281 282 283 284 285 286 287 288 289
            auto.shard_tensor(self.linear0.weight,
                              dist_attr={
                                  "process_mesh": _global_process_mesh,
                                  "dims_mapping": [-1, 0]
                              })
            auto.shard_tensor(self.linear1.weight,
                              dist_attr={
                                  "process_mesh": _global_process_mesh,
                                  "dims_mapping": [0, -1]
                              })
290
        elif _global_parallel_strategy == "dp_mp":
291 292 293 294 295 296 297 298 299 300
            auto.shard_tensor(self.linear0.weight,
                              dist_attr={
                                  "process_mesh": _global_process_mesh,
                                  "dims_mapping": [-1, 1]
                              })
            auto.shard_tensor(self.linear1.weight,
                              dist_attr={
                                  "process_mesh": _global_process_mesh,
                                  "dims_mapping": [1, -1]
                              })
301
        else:
302 303 304 305 306 307 308 309 310 311
            auto.shard_tensor(self.linear0.weight,
                              dist_attr={
                                  "process_mesh": _global_process_mesh,
                                  "dims_mapping": [-1, -1]
                              })
            auto.shard_tensor(self.linear1.weight,
                              dist_attr={
                                  "process_mesh": _global_process_mesh,
                                  "dims_mapping": [-1, -1]
                              })
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327

        out = self.norm(input)
        out = self.linear0(out)
        out = F.gelu(out, approximate=True)
        out = self.linear1(out)
        out = self.dropout(out)

        return out


def mlp_pretrain_forward(train_program, start_program):
    with static.program_guard(train_program,
                              start_program), utils.unique_name.guard():
        batch_size = 4
        hidden_size = 1024
        sequence_len = 512
328 329 330
        input = static.data(name="input",
                            shape=[batch_size, sequence_len, hidden_size],
                            dtype='float32')
331

332
        if _global_parallel_strategy == "dp":
333 334 335 336 337
            auto.shard_tensor(input,
                              dist_attr={
                                  "process_mesh": _global_process_mesh,
                                  "dims_mapping": [0, -1, -1]
                              })
338
        elif _global_parallel_strategy == "dp_mp":
339 340 341 342 343 344 345 346 347 348
            auto.shard_tensor(input,
                              dist_attr={
                                  "process_mesh": _global_process_mesh,
                                  "dims_mapping": [0, -1, -1]
                              })

        mlp = MLPLayer(hidden_size=hidden_size,
                       intermediate_size=4 * hidden_size,
                       dropout_ratio=0.1,
                       initializer_range=0.02)
349 350 351 352 353
        out = mlp(input)
    return train_program, start_program


class TestMLPAutoPartitioner(unittest.TestCase):
354

355
    def test_mlp_dp(self):
356 357
        global _global_parallel_strategy
        _global_parallel_strategy = "dp"
358
        global _global_process_mesh
359
        _global_process_mesh = auto.ProcessMesh(mesh=[0, 1, 2, 3])
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377

        serial_main_prog, serial_startup_prog, dist_main_prog, dist_startup_prog, dist_context = get_programs(
            mlp_pretrain_forward)

        # parameter should not be partitioned
        self.assertTrue(
            is_all_parameters_shape_equal(serial_main_prog, dist_main_prog))
        self.assertTrue(
            is_all_parameters_shape_equal(serial_startup_prog,
                                          dist_startup_prog))

        # op in main prog should be the same
        serial_ops = serial_main_prog.global_block().ops
        dist_ops = dist_main_prog.global_block().ops
        serial_ops = [op.type for op in serial_ops]
        dist_ops = [op.type for op in dist_ops]
        self.assertTrue(serial_ops == dist_ops)

378
        # parameter initialization
379 380
        var_need_broadcast = []
        self.assertTrue(
381 382 383 384 385 386 387 388
            initialization_check(_global_parallel_strategy,
                                 dist_context,
                                 dist_startup_prog,
                                 serial_startup_prog,
                                 var_need_broadcast,
                                 _global_process_mesh,
                                 mp_parallel_axis=None,
                                 dp_parallel_axis=0))
389 390

    def test_mlp_mp(self):
391 392
        global _global_parallel_strategy
        _global_parallel_strategy = "mp"
393
        global _global_process_mesh
394
        _global_process_mesh = auto.ProcessMesh(mesh=[0, 1, 2, 3])
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
        serial_main_prog, serial_startup_prog, dist_main_prog, dist_startup_prog, dist_context = get_programs(
            mlp_pretrain_forward)

        # param should be partition
        nrank = 4
        # col parallel
        weights = ['linear_0.w_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 1, nrank))
        weights = ['linear_0.b_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        # row parallel
        weights = ['linear_1.w_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        weights = ['linear_1.b_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, 1))

        # row and col allreduce
        dist_ops = dist_main_prog.global_block().ops
        dist_ops = [op.type for op in dist_ops]
        ref_ops = [
423 424
            'layer_norm', 'c_identity', 'matmul_v2', 'elementwise_add', 'gelu',
            'matmul_v2', 'c_allreduce_sum', 'elementwise_add', 'dropout'
425 426 427
        ]
        self.assertTrue(dist_ops == ref_ops)

428
        # parameter initialization
429 430 431
        var_need_broadcast = sorted(
            ['layer_norm_0.b_0', 'layer_norm_0.w_0', 'linear_1.b_0'])
        self.assertTrue(
432 433 434 435 436 437 438 439
            initialization_check(_global_parallel_strategy,
                                 dist_context,
                                 dist_startup_prog,
                                 serial_startup_prog,
                                 var_need_broadcast,
                                 _global_process_mesh,
                                 mp_parallel_axis=0,
                                 dp_parallel_axis=None))
440

441 442 443 444 445 446 447 448 449 450 451
        # check var and op all have dist_attr in dist_main_program
        self.assertTrue(
            distributed_attr_check_for_program(dist_main_prog, dist_context))
        # check distribured attr for dist op
        serial_op_idx = [1, 4]
        dist_op_idx = [[1, 2], [5, 6]]
        self.assertTrue(
            distributed_attr_check_for_dist_op(serial_main_prog, dist_main_prog,
                                               dist_context, serial_op_idx,
                                               dist_op_idx))

452
    def test_mlp_dp_mp(self):
453 454
        global _global_parallel_strategy
        _global_parallel_strategy = "dp_mp"
455 456
        global _global_process_mesh
        _global_process_mesh = auto.ProcessMesh(
457
            mesh=[[0, 1, 2, 3], [4, 5, 6, 7]])
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
        serial_main_prog, serial_startup_prog, dist_main_prog, dist_startup_prog, dist_context = get_programs(
            mlp_pretrain_forward)

        # param should be partition
        nrank = 4
        # col parallel
        weights = ['linear_0.w_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 1, nrank))
        weights = ['linear_0.b_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        # row parallel
        weights = ['linear_1.w_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        weights = ['linear_1.b_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, 1))

        # row and col allreduce
        dist_ops = dist_main_prog.global_block().ops
        dist_ops = [op.type for op in dist_ops]
        ref_ops = [
486 487
            'layer_norm', 'c_identity', 'matmul_v2', 'elementwise_add', 'gelu',
            'matmul_v2', 'c_allreduce_sum', 'elementwise_add', 'dropout'
488 489 490 491 492 493 494
        ]
        self.assertTrue(dist_ops == ref_ops)

        # parameter initialization
        var_need_broadcast = sorted(
            ['layer_norm_0.b_0', 'layer_norm_0.w_0', 'linear_1.b_0'])
        self.assertTrue(
495 496 497 498 499 500 501 502
            initialization_check(_global_parallel_strategy,
                                 dist_context,
                                 dist_startup_prog,
                                 serial_startup_prog,
                                 var_need_broadcast,
                                 _global_process_mesh,
                                 mp_parallel_axis=1,
                                 dp_parallel_axis=0))
503

504 505 506 507 508 509 510 511 512 513 514
        # check var and op all have dist_attr in dist_main_program
        self.assertTrue(
            distributed_attr_check_for_program(dist_main_prog, dist_context))
        # check distribured attr for dist op
        serial_op_idx = [1, 4]
        dist_op_idx = [[1, 2], [5, 6]]
        self.assertTrue(
            distributed_attr_check_for_dist_op(serial_main_prog, dist_main_prog,
                                               dist_context, serial_op_idx,
                                               dist_op_idx))

515 516

class AttentionLayer(nn.Layer):
517

518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
    def __init__(self,
                 hidden_size=1024,
                 sequence_len=512,
                 intermediate_size=4 * 1024,
                 num_heads=16,
                 dropout_ratio=0.1,
                 initializer_range=0.02):
        super(AttentionLayer, self).__init__()
        self.hidden_size = hidden_size
        self.sequence_len = sequence_len
        self.embed_dim = self.hidden_size
        self.kdim = self.embed_dim
        self.vdim = self.embed_dim
        self.num_heads = num_heads
        self.head_dim = self.embed_dim // self.num_heads
        assert self.head_dim * self.num_heads == self.embed_dim, \
            "embed_dim must be divisible by num_heads"
        self.dropout_ratio = dropout_ratio
        self.initializer_range = initializer_range
        self.training = True
        self.attn_mask = None
539 540
        weight_attr = paddle.ParamAttr(
            initializer=nn.initializer.Normal(mean=0.0, std=initializer_range))
541 542
        bias_attr = None

543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
        self.q_proj = nn.Linear(self.embed_dim,
                                self.embed_dim,
                                weight_attr,
                                bias_attr=bias_attr)
        self.k_proj = nn.Linear(self.kdim,
                                self.embed_dim,
                                weight_attr,
                                bias_attr=bias_attr)
        self.v_proj = nn.Linear(self.vdim,
                                self.embed_dim,
                                weight_attr,
                                bias_attr=bias_attr)
        self.out_proj = nn.Linear(self.embed_dim,
                                  self.embed_dim,
                                  weight_attr,
                                  bias_attr=bias_attr)
559 560

    def forward(self, input):
561
        if _global_parallel_strategy == "dp":
562 563 564 565 566
            auto.shard_tensor(input,
                              dist_attr={
                                  "process_mesh": _global_process_mesh,
                                  "dims_mapping": [0, -1, -1]
                              })
567
        elif _global_parallel_strategy == "dp_mp":
568 569 570 571 572
            auto.shard_tensor(input,
                              dist_attr={
                                  "process_mesh": _global_process_mesh,
                                  "dims_mapping": [0, -1, -1]
                              })
573 574 575 576 577 578 579 580

        q = self.q_proj(input)
        q = tensor.reshape(x=q, shape=[0, 0, self.num_heads, self.head_dim])
        q = tensor.transpose(x=q, perm=[0, 2, 1, 3])

        k = self.k_proj(input)
        v = self.v_proj(input)

581
        if _global_parallel_strategy == "mp":
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
            auto.shard_tensor(self.q_proj.weight,
                              dist_attr={
                                  "process_mesh": _global_process_mesh,
                                  "dims_mapping": [-1, 0]
                              })
            auto.shard_tensor(self.k_proj.weight,
                              dist_attr={
                                  "process_mesh": _global_process_mesh,
                                  "dims_mapping": [-1, 0]
                              })
            auto.shard_tensor(self.v_proj.weight,
                              dist_attr={
                                  "process_mesh": _global_process_mesh,
                                  "dims_mapping": [-1, 0]
                              })
597
        elif _global_parallel_strategy == "dp_mp":
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
            auto.shard_tensor(self.q_proj.weight,
                              dist_attr={
                                  "process_mesh": _global_process_mesh,
                                  "dims_mapping": [-1, 1]
                              })
            auto.shard_tensor(self.k_proj.weight,
                              dist_attr={
                                  "process_mesh": _global_process_mesh,
                                  "dims_mapping": [-1, 1]
                              })
            auto.shard_tensor(self.v_proj.weight,
                              dist_attr={
                                  "process_mesh": _global_process_mesh,
                                  "dims_mapping": [-1, 1]
                              })
613 614 615 616 617 618 619

        k = tensor.reshape(x=k, shape=[0, 0, self.num_heads, self.head_dim])
        k = tensor.transpose(x=k, perm=[0, 2, 1, 3])
        v = tensor.reshape(x=v, shape=[0, 0, self.num_heads, self.head_dim])
        v = tensor.transpose(x=v, perm=[0, 2, 1, 3])

        # scale dot product attention
620 621 622 623
        product = layers.matmul(x=q,
                                y=k,
                                transpose_y=True,
                                alpha=self.head_dim**-0.5)
624 625 626 627 628 629 630

        if self.attn_mask is not None:
            product = product + self.attn_mask

        weights = F.softmax(product)

        if self.dropout_ratio:
631 632 633 634
            weights = F.dropout(weights,
                                self.dropout_ratio,
                                training=self.training,
                                mode="upscale_in_train")
635 636 637 638 639 640 641 642 643

        out = tensor.matmul(weights, v)

        # combine heads
        out = tensor.transpose(out, perm=[0, 2, 1, 3])
        out = tensor.reshape(x=out, shape=[0, 0, out.shape[2] * out.shape[3]])

        # project to output
        out = self.out_proj(out)
644
        if _global_parallel_strategy == "mp":
645 646 647 648 649
            auto.shard_tensor(self.out_proj.weight,
                              dist_attr={
                                  "process_mesh": _global_process_mesh,
                                  "dims_mapping": [0, -1]
                              })
650
        elif _global_parallel_strategy == "dp_mp":
651 652 653 654 655
            auto.shard_tensor(self.out_proj.weight,
                              dist_attr={
                                  "process_mesh": _global_process_mesh,
                                  "dims_mapping": [1, -1]
                              })
656 657 658 659 660 661 662 663 664 665

        return out


def attn_pretrain_forward(train_program, start_program):
    with static.program_guard(train_program,
                              start_program), utils.unique_name.guard():
        batch_size = 4
        hidden_size = 1024
        sequence_len = 512
666 667 668 669 670 671 672 673 674
        input = static.data(name="query",
                            shape=[batch_size, sequence_len, hidden_size],
                            dtype='float32')
        attn = AttentionLayer(hidden_size=hidden_size,
                              sequence_len=sequence_len,
                              intermediate_size=4 * hidden_size,
                              num_heads=16,
                              dropout_ratio=0.1,
                              initializer_range=0.02)
675 676 677 678 679 680
        out = attn(input)

    return train_program, start_program


class TestAttentionAutoPartitioner(unittest.TestCase):
681

682
    def test_attn_dp(self):
683 684
        global _global_parallel_strategy
        _global_parallel_strategy = "dp"
685
        global _global_process_mesh
686
        _global_process_mesh = auto.ProcessMesh(mesh=[0, 1, 2, 3])
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703

        serial_main_prog, serial_startup_prog, dist_main_prog, dist_startup_prog, dist_context = get_programs(
            attn_pretrain_forward)
        # parameter should not be partitioned
        self.assertTrue(
            is_all_parameters_shape_equal(serial_main_prog, dist_main_prog))
        self.assertTrue(
            is_all_parameters_shape_equal(serial_startup_prog,
                                          dist_startup_prog))

        # op in main prog should be the same
        serial_ops = serial_main_prog.global_block().ops
        dist_ops = dist_main_prog.global_block().ops
        serial_ops = [op.type for op in serial_ops]
        dist_ops = [op.type for op in dist_ops]
        self.assertTrue(serial_ops == dist_ops)

704
        # parameter initialization
705 706
        var_need_broadcast = []
        self.assertTrue(
707 708 709 710 711 712 713 714
            initialization_check(_global_parallel_strategy,
                                 dist_context,
                                 dist_startup_prog,
                                 serial_startup_prog,
                                 var_need_broadcast,
                                 _global_process_mesh,
                                 mp_parallel_axis=None,
                                 dp_parallel_axis=0))
715 716

    def test_attn_mp(self):
717 718
        global _global_parallel_strategy
        _global_parallel_strategy = "mp"
719
        global _global_process_mesh
720
        _global_process_mesh = auto.ProcessMesh(mesh=[0, 1, 2, 3])
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749

        serial_main_prog, serial_startup_prog, dist_main_prog, dist_startup_prog, dist_context = get_programs(
            attn_pretrain_forward)

        # param should be partition
        nrank = 4
        # col parallel
        weights = ['linear_0.w_0', 'linear_1.w_0', 'linear_2.w_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 1, nrank))
        weights = ['linear_0.b_0', 'linear_1.b_0', 'linear_2.b_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        # row parallel
        weights = ['linear_3.w_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        weights = ['linear_3.b_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, 1))

        # row and col allreduce
        dist_ops = dist_main_prog.global_block().ops
        dist_ops = [op.type for op in dist_ops]
        ref_ops = [
750 751 752 753 754 755
            'c_identity', 'matmul_v2', 'elementwise_add', 'reshape2',
            'transpose2', 'c_identity', 'matmul_v2', 'elementwise_add',
            'c_identity', 'matmul_v2', 'elementwise_add', 'reshape2',
            'transpose2', 'reshape2', 'transpose2', 'matmul', 'softmax',
            'dropout', 'matmul_v2', 'transpose2', 'reshape2', 'matmul_v2',
            'c_allreduce_sum', 'elementwise_add'
756 757 758
        ]
        self.assertTrue(dist_ops == ref_ops)

759
        # parameter initialization
760 761
        var_need_broadcast = ['linear_3.b_0']
        self.assertTrue(
762 763 764 765 766 767 768 769
            initialization_check(_global_parallel_strategy,
                                 dist_context,
                                 dist_startup_prog,
                                 serial_startup_prog,
                                 var_need_broadcast,
                                 _global_process_mesh,
                                 mp_parallel_axis=0,
                                 dp_parallel_axis=None))
770

771 772 773 774 775 776 777 778 779 780 781
        # check var and op all have dist_attr in dist_main_program
        self.assertTrue(
            distributed_attr_check_for_program(dist_main_prog, dist_context))
        # check distribured attr for dist op
        serial_op_idx = [0, 4, 6, 18]
        dist_op_idx = [[0, 1], [5, 6], [8, 9], [21, 22]]
        self.assertTrue(
            distributed_attr_check_for_dist_op(serial_main_prog, dist_main_prog,
                                               dist_context, serial_op_idx,
                                               dist_op_idx))

782
    def test_attn_dp_mp(self):
783 784
        global _global_parallel_strategy
        _global_parallel_strategy = "dp_mp"
785 786
        global _global_process_mesh
        _global_process_mesh = auto.ProcessMesh(
787
            mesh=[[0, 1, 2, 3], [4, 5, 6, 7]])
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816

        serial_main_prog, serial_startup_prog, dist_main_prog, dist_startup_prog, dist_context = get_programs(
            attn_pretrain_forward)

        # param should be partition
        nrank = 4
        # col parallel
        weights = ['linear_0.w_0', 'linear_1.w_0', 'linear_2.w_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 1, nrank))
        weights = ['linear_0.b_0', 'linear_1.b_0', 'linear_2.b_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        # row parallel
        weights = ['linear_3.w_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        weights = ['linear_3.b_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, 1))

        # row and col allreduce
        dist_ops = dist_main_prog.global_block().ops
        dist_ops = [op.type for op in dist_ops]
        ref_ops = [
817 818 819 820 821 822
            'c_identity', 'matmul_v2', 'elementwise_add', 'reshape2',
            'transpose2', 'c_identity', 'matmul_v2', 'elementwise_add',
            'c_identity', 'matmul_v2', 'elementwise_add', 'reshape2',
            'transpose2', 'reshape2', 'transpose2', 'matmul', 'softmax',
            'dropout', 'matmul_v2', 'transpose2', 'reshape2', 'matmul_v2',
            'c_allreduce_sum', 'elementwise_add'
823 824 825
        ]
        self.assertTrue(dist_ops == ref_ops)

826
        # parameter initialization
827 828
        var_need_broadcast = ['linear_3.b_0']
        self.assertTrue(
829 830 831 832 833 834 835 836
            initialization_check(_global_parallel_strategy,
                                 dist_context,
                                 dist_startup_prog,
                                 serial_startup_prog,
                                 var_need_broadcast,
                                 _global_process_mesh,
                                 mp_parallel_axis=1,
                                 dp_parallel_axis=0))
837

838 839 840 841 842 843 844 845 846 847 848
        # check var and op all have dist_attr in dist_main_program
        self.assertTrue(
            distributed_attr_check_for_program(dist_main_prog, dist_context))
        # check distribured attr for dist op
        serial_op_idx = [0, 4, 6, 18]
        dist_op_idx = [[0, 1], [5, 6], [8, 9], [21, 22]]
        self.assertTrue(
            distributed_attr_check_for_dist_op(serial_main_prog, dist_main_prog,
                                               dist_context, serial_op_idx,
                                               dist_op_idx))

849 850

class DecoderLayer(nn.Layer):
851

852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
    def __init__(self,
                 vocab_size=32768,
                 hidden_size=1024,
                 sequence_len=512,
                 max_position_embeddings=512,
                 intermediate_size=4 * 1024,
                 num_heads=16,
                 dropout_ratio=0.1,
                 initializer_range=0.02):
        super(DecoderLayer, self).__init__()
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.max_position_embeddings = max_position_embeddings
        self.sequence_len = sequence_len
        self.embed_dim = self.hidden_size
        self.kdim = self.embed_dim
        self.vdim = self.embed_dim
        self.num_heads = num_heads
        self.dropout_ratio = dropout_ratio
        self.initializer_range = initializer_range
        self.training = True
        self.attn_mask = None

        self.head_dim = self.embed_dim // self.num_heads
        assert self.head_dim * self.num_heads == self.embed_dim, \
            "embed_dim must be divisible by num_heads"
        self.word_embeddings = nn.Embedding(
            self.vocab_size,
            self.hidden_size,
881 882 883 884
            weight_attr=paddle.ParamAttr(name="word_embeddings",
                                         initializer=nn.initializer.Normal(
                                             mean=0.0,
                                             std=self.initializer_range)))
885 886 887
        self.position_embeddings = nn.Embedding(
            self.max_position_embeddings,
            self.hidden_size,
888 889 890 891
            weight_attr=paddle.ParamAttr(name="pos_embeddings",
                                         initializer=nn.initializer.Normal(
                                             mean=0.0,
                                             std=self.initializer_range)))
892 893 894 895

        weight_attr = paddle.ParamAttr(initializer=nn.initializer.Normal(
            mean=0.0, std=self.initializer_range))
        bias_attr = None
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
        self.q_proj = nn.Linear(self.embed_dim,
                                self.embed_dim,
                                weight_attr,
                                bias_attr=bias_attr)
        self.k_proj = nn.Linear(self.kdim,
                                self.embed_dim,
                                weight_attr,
                                bias_attr=bias_attr)
        self.v_proj = nn.Linear(self.vdim,
                                self.embed_dim,
                                weight_attr,
                                bias_attr=bias_attr)
        self.out_proj = nn.Linear(self.embed_dim,
                                  self.embed_dim,
                                  weight_attr,
                                  bias_attr=bias_attr)
912 913 914 915 916 917 918

        intermediate_size = 4 * self.hidden_size
        d_model = self.hidden_size
        dim_feedforward = intermediate_size
        weight_attr = paddle.ParamAttr(initializer=nn.initializer.Normal(
            mean=0.0, std=self.initializer_range))
        bias_attr = None
919 920 921 922 923 924 925 926
        self.linear0 = nn.Linear(d_model,
                                 dim_feedforward,
                                 weight_attr,
                                 bias_attr=bias_attr)
        self.linear1 = nn.Linear(dim_feedforward,
                                 d_model,
                                 weight_attr,
                                 bias_attr=bias_attr)
927 928 929 930 931 932
        self.norm = nn.LayerNorm(d_model, epsilon=1e-5)
        self.dropout1 = nn.Dropout(self.dropout_ratio)
        self.dropout2 = nn.Dropout(self.dropout_ratio, mode="upscale_in_train")
        self.dropout3 = nn.Dropout(self.dropout_ratio, mode="upscale_in_train")

    def forward(self, input_ids, position_ids):
933
        if _global_parallel_strategy == "dp":
934 935 936 937 938
            auto.shard_tensor(input_ids,
                              dist_attr={
                                  "process_mesh": _global_process_mesh,
                                  "dims_mapping": [0, -1]
                              })
939
        elif _global_parallel_strategy == "dp_mp":
940 941 942 943 944
            auto.shard_tensor(input_ids,
                              dist_attr={
                                  "process_mesh": _global_process_mesh,
                                  "dims_mapping": [0, -1]
                              })
945 946 947 948

        input_embeddings = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)

949
        if _global_parallel_strategy == "mp":
950 951 952 953 954
            auto.shard_tensor(self.word_embeddings.weight,
                              dist_attr={
                                  "process_mesh": _global_process_mesh,
                                  "dims_mapping": [0, -1]
                              })
955
        elif _global_parallel_strategy == "dp_mp":
956 957 958 959 960
            auto.shard_tensor(self.word_embeddings.weight,
                              dist_attr={
                                  "process_mesh": _global_process_mesh,
                                  "dims_mapping": [1, -1]
                              })
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975

        embeddings = input_embeddings + position_embeddings
        embeddings = self.dropout1(embeddings)

        # Pre-norm
        target = self.norm(embeddings)

        # The following is the attention part
        q = self.q_proj(target)
        q = tensor.reshape(x=q, shape=[0, 0, self.num_heads, self.head_dim])
        q = tensor.transpose(x=q, perm=[0, 2, 1, 3])

        k = self.k_proj(target)
        v = self.v_proj(target)

976
        if _global_parallel_strategy == "mp":
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
            auto.shard_tensor(self.q_proj.weight,
                              dist_attr={
                                  "process_mesh": _global_process_mesh,
                                  "dims_mapping": [-1, 0]
                              })
            auto.shard_tensor(self.k_proj.weight,
                              dist_attr={
                                  "process_mesh": _global_process_mesh,
                                  "dims_mapping": [-1, 0]
                              })
            auto.shard_tensor(self.v_proj.weight,
                              dist_attr={
                                  "process_mesh": _global_process_mesh,
                                  "dims_mapping": [-1, 0]
                              })
992
        elif _global_parallel_strategy == "dp_mp":
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
            auto.shard_tensor(self.q_proj.weight,
                              dist_attr={
                                  "process_mesh": _global_process_mesh,
                                  "dims_mapping": [-1, 1]
                              })
            auto.shard_tensor(self.k_proj.weight,
                              dist_attr={
                                  "process_mesh": _global_process_mesh,
                                  "dims_mapping": [-1, 1]
                              })
            auto.shard_tensor(self.v_proj.weight,
                              dist_attr={
                                  "process_mesh": _global_process_mesh,
                                  "dims_mapping": [-1, 1]
                              })
1008 1009 1010 1011 1012 1013 1014

        k = tensor.reshape(x=k, shape=[0, 0, self.num_heads, self.head_dim])
        k = tensor.transpose(x=k, perm=[0, 2, 1, 3])
        v = tensor.reshape(x=v, shape=[0, 0, self.num_heads, self.head_dim])
        v = tensor.transpose(x=v, perm=[0, 2, 1, 3])

        # scale dot product attention
1015 1016 1017 1018
        product = layers.matmul(x=q,
                                y=k,
                                transpose_y=True,
                                alpha=self.head_dim**-0.5)
1019 1020 1021 1022 1023 1024 1025

        if self.attn_mask is not None:
            product = product + self.attn_mask

        weights = F.softmax(product)

        if self.dropout_ratio:
1026 1027 1028 1029
            weights = F.dropout(weights,
                                self.dropout_ratio,
                                training=self.training,
                                mode="upscale_in_train")
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039

        out = tensor.matmul(weights, v)

        # combine heads
        out = tensor.transpose(out, perm=[0, 2, 1, 3])
        out = tensor.reshape(x=out, shape=[0, 0, out.shape[2] * out.shape[3]])

        # project to output
        out = self.out_proj(out)

1040
        if _global_parallel_strategy == "mp":
1041 1042 1043 1044 1045
            auto.shard_tensor(self.out_proj.weight,
                              dist_attr={
                                  "process_mesh": _global_process_mesh,
                                  "dims_mapping": [0, -1]
                              })
1046
        elif _global_parallel_strategy == "dp_mp":
1047 1048 1049 1050 1051
            auto.shard_tensor(self.out_proj.weight,
                              dist_attr={
                                  "process_mesh": _global_process_mesh,
                                  "dims_mapping": [1, -1]
                              })
1052
        else:
1053 1054 1055 1056 1057
            auto.shard_tensor(self.out_proj.weight,
                              dist_attr={
                                  "process_mesh": _global_process_mesh,
                                  "dims_mapping": [-1, -1]
                              })
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069

        # Add residual
        residual = embeddings + self.dropout2(out)

        # Pre-norm
        out0 = self.norm(residual)

        # The following is the MLP part
        out1 = self.linear0(out0)
        out2 = F.gelu(out1, approximate=True)
        out3 = self.linear1(out2)

1070
        if _global_parallel_strategy == "mp":
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
            auto.shard_tensor(self.linear0.weight,
                              dist_attr={
                                  "process_mesh": _global_process_mesh,
                                  "dims_mapping": [-1, 0]
                              })
            auto.shard_tensor(self.linear1.weight,
                              dist_attr={
                                  "process_mesh": _global_process_mesh,
                                  "dims_mapping": [0, -1]
                              })
1081
        elif _global_parallel_strategy == "dp_mp":
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
            auto.shard_tensor(self.linear0.weight,
                              dist_attr={
                                  "process_mesh": _global_process_mesh,
                                  "dims_mapping": [-1, 1]
                              })
            auto.shard_tensor(self.linear1.weight,
                              dist_attr={
                                  "process_mesh": _global_process_mesh,
                                  "dims_mapping": [1, -1]
                              })
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103

        # Add residual
        final = residual + self.dropout3(out3)
        return final


def decoder_pretrain_forward(train_program, start_program):
    with static.program_guard(train_program,
                              start_program), utils.unique_name.guard():
        batch_size = 4
        hidden_size = 1024
        sequence_len = 512
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
        input_ids = static.data(name="input_ids",
                                shape=[batch_size, sequence_len],
                                dtype='int64')
        position_ids = static.data(name="position_ids",
                                   shape=[batch_size, sequence_len],
                                   dtype='int64')
        decoder = DecoderLayer(vocab_size=32768,
                               hidden_size=hidden_size,
                               sequence_len=sequence_len,
                               max_position_embeddings=512,
                               intermediate_size=4 * hidden_size,
                               num_heads=16,
                               dropout_ratio=0.1,
                               initializer_range=0.02)
1118 1119 1120 1121 1122 1123
        out = decoder(input_ids, position_ids)

    return train_program, start_program


class TestDecoderLayerPartitioner(unittest.TestCase):
1124

1125
    def test_decoder_dp_mp(self):
1126 1127
        global _global_parallel_strategy
        _global_parallel_strategy = "dp_mp"
1128 1129
        global _global_process_mesh
        _global_process_mesh = auto.ProcessMesh(
1130
            mesh=[[0, 1, 2, 3], [4, 5, 6, 7]])
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
        serial_main_prog, serial_startup_prog, dist_main_prog, dist_startup_prog, dist_context = get_programs(
            decoder_pretrain_forward)

        # param should be partition
        nrank = 4
        # col parallel
        weights = [
            'linear_0.w_0', 'linear_1.w_0', 'linear_2.w_0', 'linear_4.w_0'
        ]
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 1, nrank))
        weights = [
            'linear_0.b_0', 'linear_1.b_0', 'linear_2.b_0', 'linear_4.b_0'
        ]
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        # row parallel
        weights = ['word_embeddings', 'linear_3.w_0', 'linear_5.w_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        weights = [
            'linear_3.b_0', 'pos_embeddings', 'layer_norm_0.b_0',
            'layer_norm_0.w_0', 'linear_5.b_0'
        ]
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, 1))

        # row and col allreduce
        dist_ops = dist_main_prog.global_block().ops
        dist_ops = [op.type for op in dist_ops]
        ref_ops = [
            'c_embedding', 'c_allreduce_sum', 'lookup_table_v2',
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
            'elementwise_add', 'dropout', 'layer_norm', 'c_identity',
            'matmul_v2', 'elementwise_add', 'reshape2', 'transpose2',
            'c_identity', 'matmul_v2', 'elementwise_add', 'c_identity',
            'matmul_v2', 'elementwise_add', 'reshape2', 'transpose2',
            'reshape2', 'transpose2', 'matmul', 'softmax', 'dropout',
            'matmul_v2', 'transpose2', 'reshape2', 'matmul_v2',
            'c_allreduce_sum', 'elementwise_add', 'dropout', 'elementwise_add',
            'layer_norm', 'c_identity', 'matmul_v2', 'elementwise_add', 'gelu',
            'matmul_v2', 'c_allreduce_sum', 'elementwise_add', 'dropout',
            'elementwise_add'
1177 1178 1179
        ]
        self.assertTrue(dist_ops == ref_ops)

1180
        # parameter initialization
1181 1182 1183 1184 1185
        var_need_broadcast = sorted([
            'linear_3.b_0', 'pos_embeddings', 'layer_norm_0.b_0',
            'layer_norm_0.w_0', 'linear_5.b_0'
        ])
        self.assertTrue(
1186 1187 1188 1189 1190 1191 1192 1193
            initialization_check(_global_parallel_strategy,
                                 dist_context,
                                 dist_startup_prog,
                                 serial_startup_prog,
                                 var_need_broadcast,
                                 _global_process_mesh,
                                 mp_parallel_axis=1,
                                 dp_parallel_axis=0))
1194

1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
        # check var and op all have dist_attr in dist_main_program
        self.assertTrue(
            distributed_attr_check_for_program(dist_main_prog, dist_context))
        # check distribured attr
        serial_op_idx = [0, 5, 9, 11, 23, 28, 31]
        dist_op_idx = [[0, 1], [6, 7], [11, 12], [14, 15], [27, 28], [33, 34],
                       [37, 38]]
        self.assertTrue(
            distributed_attr_check_for_dist_op(serial_main_prog, dist_main_prog,
                                               dist_context, serial_op_idx,
                                               dist_op_idx))

1207
    def test_decoder_noparallel(self):
1208 1209
        global _global_parallel_strategy
        _global_parallel_strategy = "None"
1210 1211
        global _global_process_mesh
        _global_process_mesh = auto.ProcessMesh(
1212
            mesh=[[0, 1, 2, 3], [4, 5, 6, 7]])
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
        serial_main_prog, serial_startup_prog, dist_main_prog, dist_startup_prog, dist_context = get_programs(
            decoder_pretrain_forward)

        # param should be partition
        nrank = 1
        # col parallel
        weights = [
            'linear_0.w_0', 'linear_1.w_0', 'linear_2.w_0', 'linear_4.w_0'
        ]
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 1, nrank))
        weights = [
            'linear_0.b_0', 'linear_1.b_0', 'linear_2.b_0', 'linear_4.b_0'
        ]
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        # row parallel
        weights = ['word_embeddings', 'linear_3.w_0', 'linear_5.w_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        weights = [
            'linear_3.b_0', 'pos_embeddings', 'layer_norm_0.b_0',
            'layer_norm_0.w_0', 'linear_5.b_0'
        ]
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, 1))

        # row and col allreduce
        dist_ops = dist_main_prog.global_block().ops
        dist_ops = [op.type for op in dist_ops]
        ref_ops = [
            'lookup_table_v2', 'lookup_table_v2', 'elementwise_add', 'dropout',
1249 1250 1251 1252 1253 1254 1255
            'layer_norm', 'matmul_v2', 'elementwise_add', 'reshape2',
            'transpose2', 'matmul_v2', 'elementwise_add', 'matmul_v2',
            'elementwise_add', 'reshape2', 'transpose2', 'reshape2',
            'transpose2', 'matmul', 'softmax', 'dropout', 'matmul_v2',
            'transpose2', 'reshape2', 'matmul_v2', 'elementwise_add', 'dropout',
            'elementwise_add', 'layer_norm', 'matmul_v2', 'elementwise_add',
            'gelu', 'matmul_v2', 'elementwise_add', 'dropout', 'elementwise_add'
1256 1257 1258 1259 1260 1261 1262 1263 1264
        ]
        self.assertTrue(dist_ops == ref_ops)
        dist_ops = dist_startup_prog.global_block().ops
        dist_ops = [op.type for op in dist_ops]
        ref_ops = [
            'gaussian_random', 'gaussian_random', 'gaussian_random',
            'fill_constant', 'gaussian_random', 'fill_constant',
            'gaussian_random', 'fill_constant', 'gaussian_random',
            'fill_constant', 'gaussian_random', 'fill_constant',
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
            'gaussian_random', 'fill_constant', 'fill_constant',
            'fill_constant', 'c_broadcast', 'c_broadcast', 'c_broadcast',
            'c_broadcast', 'c_broadcast', 'c_broadcast', 'c_broadcast',
            'c_broadcast', 'c_broadcast', 'c_broadcast', 'c_broadcast',
            'c_broadcast', 'c_broadcast', 'c_broadcast', 'c_broadcast',
            'c_broadcast', 'c_broadcast', 'c_broadcast', 'c_broadcast',
            'c_broadcast', 'c_broadcast', 'c_broadcast', 'c_broadcast',
            'c_broadcast', 'c_broadcast', 'c_broadcast', 'c_broadcast',
            'c_broadcast', 'c_broadcast', 'c_broadcast', 'c_broadcast',
            'c_broadcast'
1275 1276 1277 1278 1279 1280
        ]
        self.assertTrue(dist_ops == ref_ops)


if __name__ == "__main__":
    unittest.main()