softmax_impl.h 16.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16
#include <vector>
Y
Yi Wang 已提交
17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/tensor.h"
T
tensor-tang 已提交
19
#include "paddle/fluid/operators/jit/kernels.h"
20 21
#include "paddle/fluid/operators/math/cpu_vec.h"
#include "paddle/fluid/platform/cpu_info.h"
22 23 24 25 26 27 28 29 30 31 32 33

namespace paddle {
namespace operators {
namespace math {

template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

template <typename T>
struct ValueClip {
  HOSTDEVICE T operator()(const T& x) const {
34
    const T kThreshold = static_cast<T>(-64.);
35 36 37 38
    return x < kThreshold ? kThreshold : x;
  }
};

39
template <typename DeviceContext, typename T, bool is_test>
40 41 42
class SoftmaxEigen {
 public:
  void operator()(const DeviceContext& context, const int axis_dim,
43
                  const framework::Tensor* X, framework::Tensor* Y) {
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    constexpr int kBatchDim = 0;
    constexpr int kClassDim = 1;
    constexpr int kAxisDim = 1;

    auto logits = EigenMatrix<T>::From(*X);
    auto softmax = EigenMatrix<T>::From(*Y);

    const int batch_size = logits.dimension(kBatchDim);
    const int num_classes = logits.dimension(kClassDim);
    const int num_remain = num_classes / axis_dim;

    Eigen::DSizes<int, 1> along_axis(kAxisDim);
    Eigen::DSizes<int, 2> batch_classes(batch_size, num_classes);
    Eigen::DSizes<int, 2> batch_by_one(batch_size, 1);
    Eigen::DSizes<int, 2> one_by_class(1, num_classes);
    Eigen::DSizes<int, 3> batch_one_remain(batch_size, 1, num_remain);
    Eigen::DSizes<int, 3> one_axis_one(1, axis_dim, 1);
    Eigen::DSizes<int, 2> one_axis(1, axis_dim);
    Eigen::DSizes<int, 3> batch_axis_remain(batch_size, axis_dim, num_remain);

    // For numerical stability, logits should be shifted by maximum number along
    // axis, calculate shifted_logits into softmax tensor for memory reuse.
    if (num_remain == 1) {
      // axis == -1, axis and class in same dimension, calculate along
      // class dimension directly for higher performance
      softmax.device(*context.eigen_device()) = (logits -
                                                 logits.maximum(along_axis)
                                                     .eval()
                                                     .reshape(batch_by_one)
                                                     .broadcast(one_by_class))
                                                    .unaryExpr(ValueClip<T>());
    } else {
      // axis != -1, class dimension split into (axis, remain), max and sum
      // should be calculated along axis dimension
      softmax.device(*context.eigen_device()) =
          (logits.reshape(batch_axis_remain) -
           logits.reshape(batch_axis_remain)
               .maximum(along_axis)
               .eval()
               .reshape(batch_one_remain)
               .broadcast(one_axis_one)
               .reshape(batch_classes))
              .unaryExpr(ValueClip<T>());
    }

    softmax.device(*context.eigen_device()) = softmax.exp();
90
    softmax.device(*context.eigen_device()) =
91 92 93 94
        (softmax *
         softmax.reshape(batch_axis_remain)
             .sum(along_axis)
             .inverse()
95
             .eval()
96
             .broadcast(one_axis));
97
  }
98
};
99

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
template <typename DeviceContext, bool is_test>
class SoftmaxEigen<DeviceContext, platform::float16, is_test> {
 public:
  void operator()(const DeviceContext& context, const int axis_dim,
                  const framework::Tensor* X, framework::Tensor* Y) {
    constexpr int kBatchDim = 0;
    constexpr int kClassDim = 1;
    constexpr int kAxisDim = 1;

    auto logits = EigenMatrix<platform::float16>::From(*X);
    auto softmax = EigenMatrix<platform::float16>::From(*Y);

    const int batch_size = logits.dimension(kBatchDim);
    const int num_classes = logits.dimension(kClassDim);
    const int num_remain = num_classes / axis_dim;

    Eigen::DSizes<int, 1> along_axis(kAxisDim);
    Eigen::DSizes<int, 2> batch_classes(batch_size, num_classes);
    Eigen::DSizes<int, 2> batch_by_one(batch_size, 1);
    Eigen::DSizes<int, 2> one_by_class(1, num_classes);
    Eigen::DSizes<int, 3> batch_one_remain(batch_size, 1, num_remain);
    Eigen::DSizes<int, 3> one_axis_one(1, axis_dim, 1);
    Eigen::DSizes<int, 2> one_axis(1, axis_dim);
    Eigen::DSizes<int, 3> batch_axis_remain(batch_size, axis_dim, num_remain);

    // For numerical stability, logits should be shifted by maximum number along
    // axis, calculate shifted_logits into softmax tensor for memory reuse.
    if (num_remain == 1) {
      // axis == -1, axis and class in same dimension, calculate along
      // class dimension directly for higher performance
      softmax.device(*context.eigen_device()) =
          (logits -
           logits.maximum(along_axis)
               .reshape(batch_by_one)
               .broadcast(one_by_class))
              .unaryExpr(ValueClip<platform::float16>());
    } else {
      // axis != -1, class dimension split into (axis, remain), max and sum
      // should be calculated along axis dimension
      softmax.device(*context.eigen_device()) =
          (logits.reshape(batch_axis_remain) -
           logits.reshape(batch_axis_remain)
               .maximum(along_axis)
               .reshape(batch_one_remain)
               .broadcast(one_axis_one)
               .reshape(batch_classes))
              .unaryExpr(ValueClip<platform::float16>());
    }

    softmax.device(*context.eigen_device()) = softmax.exp();
    softmax.device(*context.eigen_device()) =
        (softmax *
         softmax.reshape(batch_axis_remain)
             .sum(along_axis)
             .inverse()
             .broadcast(one_axis));
  }
};
158

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
template <typename DeviceContext, bool is_test>
class SoftmaxEigen<DeviceContext, platform::bfloat16, is_test> {
 public:
  void operator()(const DeviceContext& context, const int axis_dim,
                  const framework::Tensor* X, framework::Tensor* Y) {
    constexpr int kBatchDim = 0;
    constexpr int kClassDim = 1;
    constexpr int kAxisDim = 1;

    auto logits = EigenMatrix<platform::bfloat16>::From(*X);
    auto softmax = EigenMatrix<platform::bfloat16>::From(*Y);

    const int batch_size = logits.dimension(kBatchDim);
    const int num_classes = logits.dimension(kClassDim);
    const int num_remain = num_classes / axis_dim;

    Eigen::DSizes<int, 1> along_axis(kAxisDim);
    Eigen::DSizes<int, 2> batch_classes(batch_size, num_classes);
    Eigen::DSizes<int, 2> batch_by_one(batch_size, 1);
    Eigen::DSizes<int, 2> one_by_class(1, num_classes);
    Eigen::DSizes<int, 3> batch_one_remain(batch_size, 1, num_remain);
    Eigen::DSizes<int, 3> one_axis_one(1, axis_dim, 1);
    Eigen::DSizes<int, 2> one_axis(1, axis_dim);
    Eigen::DSizes<int, 3> batch_axis_remain(batch_size, axis_dim, num_remain);

    // For numerical stability, logits should be shifted by maximum number along
    // axis, calculate shifted_logits into softmax tensor for memory reuse.
    if (num_remain == 1) {
      // axis == -1, axis and class in same dimension, calculate along
      // class dimension directly for higher performance
      softmax.device(*context.eigen_device()) =
          (logits -
           logits.maximum(along_axis)
               .reshape(batch_by_one)
               .broadcast(one_by_class))
              .unaryExpr(ValueClip<platform::bfloat16>());
    } else {
      // axis != -1, class dimension split into (axis, remain), max and sum
      // should be calculated along axis dimension
      softmax.device(*context.eigen_device()) =
          (logits.reshape(batch_axis_remain) -
           logits.reshape(batch_axis_remain)
               .maximum(along_axis)
               .reshape(batch_one_remain)
               .broadcast(one_axis_one)
               .reshape(batch_classes))
              .unaryExpr(ValueClip<platform::bfloat16>());
    }

    softmax.device(*context.eigen_device()) = softmax.exp();
    softmax.device(*context.eigen_device()) =
        (softmax *
         softmax.reshape(batch_axis_remain)
             .sum(along_axis)
             .inverse()
             .broadcast(one_axis));
  }
};

218 219 220 221
template <typename DeviceContext, typename T, bool is_test, typename Enable>
void SoftmaxFunctor<DeviceContext, T, is_test, Enable>::operator()(
    const DeviceContext& context, const int axis_dim,
    const framework::Tensor* X, framework::Tensor* Y) {
222
  SoftmaxEigen<DeviceContext, T, is_test>()(context, axis_dim, X, Y);
223 224
}

225 226 227 228
template <class DeviceContext>
using enable_if_CPU = typename std::enable_if<
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type;

229 230 231 232 233
template <typename DeviceContext, typename T, bool is_test>
class SoftmaxFunctor<DeviceContext, T, is_test, enable_if_CPU<DeviceContext>> {
 public:
  void operator()(const DeviceContext& context, const int axis_dim,
                  const framework::Tensor* X, framework::Tensor* Y) {
234
    const auto& in_dims = X->dims();
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
    constexpr int kBatchDim = 0;
    constexpr int kClassDim = 1;

    const int num_classes = in_dims[kClassDim];
    const int batch_size = in_dims[kBatchDim];
    const int num_remain = num_classes / axis_dim;

    if (num_remain == 1 && platform::MayIUse(platform::avx)) {
      const T* in_data = X->data<T>();
      T* out_data = Y->data<T>();
      for (int bs = 0; bs < batch_size; ++bs) {
        T max_val = *std::max_element(in_data, in_data + num_classes);
        max_val *= static_cast<T>(-1);
        vec_add_bias<T, platform::avx>(num_classes, max_val, in_data, out_data);
        vec_clip<T, platform::avx>(num_classes, static_cast<T>(-64), out_data,
                                   out_data);
        vec_exp<T>(num_classes, out_data, out_data);

        T sum = 0;
        vec_sum<T, platform::avx>(num_classes, out_data, &sum);
        sum = static_cast<T>(1) / sum;
        vec_scal<T, platform::avx>(num_classes, sum, out_data, out_data);

        in_data += num_classes;
        out_data += num_classes;
      }
    } else {
262
      SoftmaxEigen<DeviceContext, T, is_test>()(context, axis_dim, X, Y);
263 264 265 266
    }
  }
};

267
template <typename DeviceContext>
268
class SoftmaxFunctor<DeviceContext, float, true, enable_if_CPU<DeviceContext>> {
269
 public:
270 271
  void operator()(const DeviceContext& context, const int axis_dim,
                  const framework::Tensor* X, framework::Tensor* Y) {
272 273 274
    auto in_dims = X->dims();
    const float* in_data = X->data<float>();
    float* out_data = Y->data<float>();
275 276
    const int kBatchDim = 0;
    const int kClassDim = 1;
277
    // 2D data. Batch x C
T
tensor-tang 已提交
278
    auto compute_softmax =
279
        jit::KernelFuncs<jit::SoftmaxTuple<float>, platform::CPUPlace>::Cache()
T
tensor-tang 已提交
280
            .At(in_dims[kClassDim]);
281 282
    compute_softmax(in_data, out_data, in_dims[kClassDim], in_dims[kBatchDim],
                    in_dims[kClassDim] / axis_dim);
283 284 285 286
  }
};

template <typename DeviceContext, typename T>
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
class SoftmaxGradEigen {
 public:
  void operator()(const DeviceContext& context, const int axis_dim,
                  const framework::Tensor* y, const framework::Tensor* y_grad,
                  framework::Tensor* x_grad) {
    auto softmax = EigenMatrix<T>::From(*y);
    auto softmax_grad = EigenMatrix<T>::From(*y_grad);
    auto logits_grad = EigenMatrix<T>::From(*x_grad);

    constexpr int kBatchDim = 0;
    constexpr int kClassDim = 1;

    const int batch_size = softmax.dimension(kBatchDim);
    const int num_classes = softmax.dimension(kClassDim);
    const int num_remain = num_classes / axis_dim;

    Eigen::DSizes<int, 1> along_class(kClassDim);
    Eigen::DSizes<int, 2> batch_by_one(batch_size, 1);
    Eigen::DSizes<int, 2> one_by_class(1, num_classes);
    Eigen::DSizes<int, 3> batch_axis_remain(batch_size, axis_dim, num_remain);
    Eigen::DSizes<int, 2> one_axis(1, axis_dim);

    auto dot = (softmax * softmax_grad)
                   .reshape(batch_axis_remain)
                   .sum(along_class)
                   .eval()
                   .broadcast(one_axis);
    logits_grad.device(*context.eigen_device()) =
        (softmax_grad - dot) * softmax;
  }
};

template <typename DeviceContext>
class SoftmaxGradEigen<DeviceContext, platform::float16> {
 public:
  void operator()(const DeviceContext& context, const int axis_dim,
                  const framework::Tensor* y, const framework::Tensor* y_grad,
                  framework::Tensor* x_grad) {
    auto softmax = EigenMatrix<platform::float16>::From(*y);
    auto softmax_grad = EigenMatrix<platform::float16>::From(*y_grad);
    auto logits_grad = EigenMatrix<platform::float16>::From(*x_grad);

    constexpr int kBatchDim = 0;
    constexpr int kClassDim = 1;

    const int batch_size = softmax.dimension(kBatchDim);
    const int num_classes = softmax.dimension(kClassDim);
    const int num_remain = num_classes / axis_dim;

    Eigen::DSizes<int, 1> along_class(kClassDim);
    Eigen::DSizes<int, 2> batch_by_one(batch_size, 1);
    Eigen::DSizes<int, 2> one_by_class(1, num_classes);
    Eigen::DSizes<int, 3> batch_axis_remain(batch_size, axis_dim, num_remain);
    Eigen::DSizes<int, 2> one_axis(1, axis_dim);

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
    auto dot = (softmax * softmax_grad)
                   .reshape(batch_axis_remain)
                   .sum(along_class)
                   .broadcast(one_axis);
    logits_grad.device(*context.eigen_device()) =
        (softmax_grad - dot) * softmax;
  }
};

template <typename DeviceContext>
class SoftmaxGradEigen<DeviceContext, platform::bfloat16> {
 public:
  void operator()(const DeviceContext& context, const int axis_dim,
                  const framework::Tensor* y, const framework::Tensor* y_grad,
                  framework::Tensor* x_grad) {
    auto softmax = EigenMatrix<platform::bfloat16>::From(*y);
    auto softmax_grad = EigenMatrix<platform::bfloat16>::From(*y_grad);
    auto logits_grad = EigenMatrix<platform::bfloat16>::From(*x_grad);

    constexpr int kBatchDim = 0;
    constexpr int kClassDim = 1;

    const int batch_size = softmax.dimension(kBatchDim);
    const int num_classes = softmax.dimension(kClassDim);
    const int num_remain = num_classes / axis_dim;

    Eigen::DSizes<int, 1> along_class(kClassDim);
    Eigen::DSizes<int, 2> batch_by_one(batch_size, 1);
    Eigen::DSizes<int, 2> one_by_class(1, num_classes);
    Eigen::DSizes<int, 3> batch_axis_remain(batch_size, axis_dim, num_remain);
    Eigen::DSizes<int, 2> one_axis(1, axis_dim);

374 375 376 377 378 379 380 381
    auto dot = (softmax * softmax_grad)
                   .reshape(batch_axis_remain)
                   .sum(along_class)
                   .broadcast(one_axis);
    logits_grad.device(*context.eigen_device()) =
        (softmax_grad - dot) * softmax;
  }
};
382

383 384 385 386 387
template <typename DeviceContext, typename T, typename Enable>
void SoftmaxGradFunctor<DeviceContext, T, Enable>::operator()(
    const DeviceContext& context, const int axis_dim,
    const framework::Tensor* y, const framework::Tensor* y_grad,
    framework::Tensor* x_grad) {
388
  SoftmaxGradEigen<DeviceContext, T>()(context, axis_dim, y, y_grad, x_grad);
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
}

template <typename DeviceContext, typename T>
class SoftmaxGradFunctor<DeviceContext, T, enable_if_CPU<DeviceContext>> {
 public:
  void operator()(const DeviceContext& context, const int axis_dim,
                  const framework::Tensor* y, const framework::Tensor* y_grad,
                  framework::Tensor* x_grad) {
    auto out_dims = y->dims();
    constexpr int kBatchDim = 0;
    constexpr int kClassDim = 1;
    const int num_classes = out_dims[kClassDim];
    const int batch_size = out_dims[kBatchDim];
    const int num_remain = num_classes / axis_dim;

    if (num_remain == 1 && platform::MayIUse(platform::avx)) {
      const T* out_data = y->data<T>();
      const T* out_grad = y_grad->data<T>();
      T* in_grad = x_grad->data<T>();
      for (int bs = 0; bs < batch_size; ++bs) {
        T scalar;
        vec_mul_reduce<T, platform::avx>(num_classes, out_grad, out_data,
                                         &scalar);
        scalar *= static_cast<T>(-1);
        vec_add_bias<T, platform::avx>(num_classes, scalar, out_grad, in_grad);
        vec_mul<T, platform::avx>(num_classes, out_data, in_grad, in_grad);
        out_data += num_classes;
        out_grad += num_classes;
        in_grad += num_classes;
      }
    } else {
420 421
      SoftmaxGradEigen<DeviceContext, T>()(context, axis_dim, y, y_grad,
                                           x_grad);
422 423 424 425
    }
  }
};

426 427 428
}  // namespace math
}  // namespace operators
}  // namespace paddle