grad_node_info.h 10.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

17 18
#include <memory>

19
#include "paddle/fluid/eager/api/utils/global_utils.h"
20
#include "paddle/fluid/eager/eager_tensor.h"
21
#include "paddle/fluid/eager/hooks.h"
22
#include "paddle/phi/api/all.h"
23 24 25 26 27 28 29 30 31 32

namespace egr {
/**
 * GradNodeBase is base class of all grad node, which is what should be used by
 * eager execution, we define most of backward autograd members here, and for
 * each Operator, they should hold their onw forward Inputs as TensorWrapper.
 *
 * The GradNodeBase will be held in autograd_meta, and it is also a member of
 * Edge, which indicates the edge of backward graph.
 *
33
 * TODO(yangzhanlue): GradNodeBase will also in charge of get the correct input
34 35
 * from GradOpDescMaker to GradNodeBase.
 *
36 37 38 39
 * NOTE: GradNodeBase has a method named run, this method should be overrided by
 * the specific derived class, it will prepare backward inputs and double
 * backward's depends. Then, it will call C++ API of backward kernel functions
 * to finish backward computation.
40
 *
41
 * NOTE: GradNodeBase holds its own inputs and Outputs
42 43
 *
 * Edge is defined to descripe depend of backward, an Edge is what linked
44 45 46
 * between two node, it should contain a Node and rank of this Node (this is
 * used to indicate which input of grad this edge belong).
 **/
47
class AutogradMeta;
48
class GradNodeBase;
49

50 51 52 53 54 55 56 57
class Edge {
 public:
  // Default constructor for Edges in order to construct it for AutogradMeta
  Edge() : in_slot_id_(0), in_rank_(0), grad_node_(nullptr) {}

  // In real use cases we should create Edge from grad node and input rank which
  // indicate which edge it is.
  // Since we have slot design in operators we will have to locate an edge with
58
  // slot and rank.
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
  Edge(const std::shared_ptr<GradNodeBase>& grad_node, size_t in_slot_id,
       size_t in_rank)
      : in_slot_id_(in_slot_id), in_rank_(in_rank), grad_node_(grad_node) {}

  Edge(const std::shared_ptr<GradNodeBase>& grad_node,
       const std::pair</* slot_id */ size_t, /* rank */ size_t>& rank_info)
      : in_slot_id_(rank_info.first),
        in_rank_(rank_info.second),
        grad_node_(grad_node) {}

  GradNodeBase* GetGradNode() const { return grad_node_.get(); }

  std::shared_ptr<GradNodeBase> GetMutableGradNode() const {
    return grad_node_;
  }

  void SetGradNode(const std::shared_ptr<GradNodeBase>& node) {
    VLOG(6) << "Reseting Edge's Grad Node";
    grad_node_ = node;
  }

  std::pair<size_t, size_t> GetEdgeRankInfo() const {
    return std::make_pair(in_slot_id_, in_rank_);
  }

  void SetEdgeRankInfo(size_t slot_id, size_t in_rank) {
    in_slot_id_ = slot_id;
    in_rank_ = in_rank;
  }

  void SetEdgeRankInfo(
      const std::pair</* slot_id */ size_t, /* rank */ size_t>& edge_rank) {
    in_slot_id_ = edge_rank.first;
    in_rank_ = edge_rank.second;
  }

  // Currently we use grad_node_ to identify if a edge is initialized.
  bool IsInitialized() const {
    if (!grad_node_) {
      return false;
    } else {
      if (!(grad_node_.get())) {
        return false;
      } else {
        return true;
      }
    }
  }

 private:
  size_t in_slot_id_;
  size_t in_rank_;
  std::shared_ptr<GradNodeBase> grad_node_{nullptr};
};
113 114 115 116 117 118

/**
 * GradSlotMeta is used to Record Forward Tensor info to backward, since paddle
 * has lots of operators whose backward logic is depends on if it has some
 * specific inputs or outputs. So, we need a meta info to record it's needs.
 **/
119 120 121
class GradSlotMeta {
 public:
  GradSlotMeta() = default;
122 123 124
  bool IsStopGradient() const { return stop_gradient_; }
  void SetStopGradient(bool stop_gradient = true) {
    stop_gradient_ = stop_gradient;
125 126
  }

127 128 129 130 131 132 133 134 135 136 137 138
  void SetTensorMeta(const phi::DenseTensorMeta& meta) {
    meta_ = std::make_shared<phi::DenseTensorMeta>(meta);
  }
  bool HasTensorMeta() const { return meta_ && meta_.get(); }
  const phi::DenseTensorMeta& GetTensorMeta() const {
    if (!HasTensorMeta()) {
      PADDLE_THROW(paddle::platform::errors::Fatal(
          "meta_ of GradSlotMeta has not been initialized yet."
          "You're expected to check Edge availability with HasTensorMeta()"
          "before calling GetTensorMeta() interface."));
    }
    return *meta_.get();
139 140
  }

141 142 143
  void SetPlace(const phi::Place& place) { place_ = place; }
  const phi::Place& GetPlace() const { return place_; }

144 145 146 147 148 149 150 151 152 153
  void SetEdge(const Edge& edge) { adj_edge_ = edge; }
  void SetEdge(
      const std::shared_ptr<GradNodeBase>& grad_node,
      const std::pair</* slot_id */ size_t, /* rank */ size_t>& rank_info) {
    adj_edge_.SetGradNode(grad_node);
    adj_edge_.SetEdgeRankInfo(rank_info);
  }
  Edge& GetMutableEdge() { return adj_edge_; }
  const Edge& GetEdge() const { return adj_edge_; }

154
 private:
155
  bool stop_gradient_{false};
156
  phi::Place place_;
157
  std::shared_ptr<phi::DenseTensorMeta> meta_ = nullptr;
158
  Edge adj_edge_;
159 160
};

161
class GradNodeBase {
162
 public:
J
Jiabin Yang 已提交
163
  GradNodeBase() { VLOG(6) << "Construct GradNodeBase"; }
164 165
  GradNodeBase(size_t bwd_in_slot_num, size_t bwd_out_slot_num);
  // TODO(jiabin): Should we have other constructor here?
J
Jiabin Yang 已提交
166
  virtual ~GradNodeBase() { VLOG(6) << "Destruct GradNodeBase"; }
167 168 169

  /**
   * operator() designed to contian the real backward execution logic, it should
170 171
   * be overrided by derived class defined for each operator. It accepts a
   * vector of Tensor which contains grads input of current operator
172 173
   *
   * Note: why we need backward inputs and outputs construct as vector of vector
174
   * of paddle::experimental::Tensor?
175
   * Since all of paddle op composite in form of {"Slot name ", vector<Var>},
176
   * so, vector of vector is better choice to fit this format.
177
   * **/
178 179 180 181 182 183
  virtual paddle::small_vector<std::vector<paddle::experimental::Tensor>,
                               kSlotSmallVectorSize>
  operator()(paddle::small_vector<std::vector<paddle::experimental::Tensor>,
                                  kSlotSmallVectorSize>& grads,  // NOLINT
             bool create_graph = false,
             bool is_new_grad = false) = 0;
184

185 186
  virtual void ClearTensorWrappers() = 0;

187 188 189 190 191
  /**
       * Self-Copy interface designed for use in DoubleGrad
       * **/
  virtual std::shared_ptr<GradNodeBase> Copy() const = 0;

192 193 194 195
  // adj_edges were moved inside OutputMeta(), so no available direct access
  // from GradNodeBase.
  // To access Edges, get GradSlotMeta by calling OutputMeta(), then use
  // slot_meta.GetEdge()
196 197 198

  /**
   * Get Input Meta of current Grad node**/
199 200
  const paddle::small_vector<std::vector<GradSlotMeta>, kSlotSmallVectorSize>&
  InputMeta() const;
201 202
  /**
   * Get Output Meta of current Grad node**/
203 204 205 206 207
  const paddle::small_vector<std::vector<GradSlotMeta>, kSlotSmallVectorSize>&
  OutputMeta() const;

  paddle::small_vector<std::vector<GradSlotMeta>, kSlotSmallVectorSize>&
  MutableOutputMeta();
208 209 210 211
  /**
   * Set bwd ins and outs info with forward vars
   * **/

212 213 214 215
  void SetGradInMeta(const std::vector<paddle::experimental::Tensor>& fwd_out,
                     size_t slot_rank);
  void SetGradInMeta(const paddle::experimental::Tensor& fwd_out,
                     size_t slot_rank);
216

217 218 219 220
  void SetGradOutMeta(const std::vector<paddle::experimental::Tensor>& fwd_in,
                      size_t slot_rank);
  void SetGradOutMeta(const paddle::experimental::Tensor& fwd_in,
                      size_t slot_rank);
221 222 223 224 225 226
  /**
   * Default setters for Grad in/out meta this should be used for same special
   * Node which will not create by user
   * **/
  void SetDefaultGradInOutMeta();
  /**
227
   * Register GradientHook
228
   * **/
229 230 231 232 233 234 235 236 237 238 239 240 241
  int64_t RegisterGradientHook(size_t slot_id, size_t rank,
                               std::shared_ptr<egr::TensorHook>&& hook);

  /**
  * Remove GradientHook
  * **/
  bool RemoveGradientHook(const int64_t& hook_id) {
    auto remove_cnt = gradient_hooks_.erase(hook_id);
    if (remove_cnt == 0) {
      return false;
    }
    return true;
  }
242 243

  /**
244
   * Apply GradientHook
245
   * **/
246
  inline bool GradientHooksRegistered() { return !gradient_hooks_.empty(); }
247

248 249 250 251 252
  paddle::small_vector<std::vector<paddle::experimental::Tensor>,
                       kSlotSmallVectorSize>
  ApplyGradientHooks(
      const paddle::small_vector<std::vector<paddle::experimental::Tensor>,
                                 kSlotSmallVectorSize>& tensors);
253

254 255 256 257
  /**
    * Handle Complex - Real Type Promotion
    * **/
  void HandleComplexGradToRealGrad(
258 259
      paddle::small_vector<std::vector<paddle::experimental::Tensor>,
                           kSlotSmallVectorSize>* out_grads);
260 261
  bool NeedComplexToRealConversion() { return need_complex_to_real_; }

262 263
  virtual std::string name() { return "GradNodeBase"; }

264 265 266 267 268 269 270 271
  /**
       * The following interfaces are designed for no_need_buffer
       * **/
  bool IsTensorWrappersCleared() { return is_tensor_wrappers_cleared_; }

  void SetIsTensorWrappersCleared(bool is_tensor_wrappers_cleared) {
    is_tensor_wrappers_cleared_ = is_tensor_wrappers_cleared;
  }
272

273
 private:
274
  // bwd_out_meta_ is used to record Grad output info for backward
275 276
  paddle::small_vector<std::vector<GradSlotMeta>, kSlotSmallVectorSize>
      bwd_out_meta_;
277 278

  // bwd_in_meta_ used to record Grad input info for backward
279 280
  paddle::small_vector<std::vector<GradSlotMeta>, kSlotSmallVectorSize>
      bwd_in_meta_;
281 282 283
  // Gradient Hooks
  // Customer may register a list of hooks which will be called in order during
  // backward
284 285 286 287 288
  // Each entry consists one pair of
  // <hook_id, <out_rank, std::shared_ptr<TensorHook>>>
  std::map<int64_t, std::tuple<
                        /* slot id */ size_t, /* rank */ size_t,
                        /* hook */ std::shared_ptr<TensorHook>>>
289
      gradient_hooks_;
290
  int64_t next_hook_id_{0};
291

292 293
  // We handle complex to real conversion only if any complex GradIn is involved
  bool need_complex_to_real_ = false;
294

295
  bool is_tensor_wrappers_cleared_ = false;
296 297 298
};

}  // namespace egr