imperative.cc 37.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/pybind/imperative.h"
16

17
#include <Python.h>
18 19 20 21
#include <pybind11/chrono.h>
#include <pybind11/complex.h>
#include <pybind11/functional.h>
#include <pybind11/stl.h>
22
#include <memory>
23
#include <set>
J
Jiabin Yang 已提交
24
#include <string>
25 26
#include <unordered_map>
#include <utility>
J
Jiabin Yang 已提交
27 28
#include <vector>
#include "paddle/fluid/imperative/backward_strategy.h"
29
#include "paddle/fluid/imperative/basic_engine.h"
30
#include "paddle/fluid/imperative/data_loader.h"
31
#include "paddle/fluid/imperative/layer.h"
J
Jiabin Yang 已提交
32
#include "paddle/fluid/imperative/nccl_context.h"
33
#include "paddle/fluid/imperative/partial_grad_engine.h"
34
#include "paddle/fluid/imperative/profiler.h"
35
#include "paddle/fluid/imperative/tracer.h"
M
minqiyang 已提交
36
#include "paddle/fluid/imperative/type_defs.h"
37
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
38
#include "paddle/fluid/pybind/op_function.h"
39
#include "paddle/fluid/pybind/pybind_boost_headers.h"
L
Leo Chen 已提交
40
#include "paddle/fluid/pybind/tensor_py.h"
41

42 43 44
namespace paddle {
namespace pybind {

45 46
namespace py = ::pybind11;

47 48 49 50
class Layer : public imperative::Layer {
 public:
  using imperative::Layer::Layer;  // Inherit constructors

51 52 53 54
  std::vector<std::shared_ptr<imperative::VarBase>> Forward(
      const std::vector<std::shared_ptr<imperative::VarBase>> &inputs)
      override {
    PYBIND11_OVERLOAD(std::vector<std::shared_ptr<imperative::VarBase>>, Layer,
J
Jiabin Yang 已提交
55
                      Forward, inputs);  // NOLINT
56 57 58
  }
};

L
Leo Chen 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
static const platform::Place PyObjectToPlace(const py::object &place_obj) {
  if (py::isinstance<platform::CPUPlace>(place_obj)) {
    return place_obj.cast<platform::CPUPlace>();
  } else if (py::isinstance<platform::CUDAPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPlace>();
  } else if (py::isinstance<platform::CUDAPinnedPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPinnedPlace>();
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Place should be one of CPUPlace/CUDAPlace/CUDAPinnedPlace"));
  }
}

static void InitTensorForVarBase(imperative::VarBase *self,
                                 const py::array &array,
                                 const platform::Place place,
                                 bool persistable = false,
                                 bool zero_copy = false,
                                 std::string name = "") {
  if (name == "") {
    name = imperative::GetCurrentTracer()->GenerateUniqueName("generated_var");
  }
  new (self) imperative::VarBase(name);
82
  auto *tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
L
Leo Chen 已提交
83 84 85 86 87 88 89 90 91
  if (platform::is_cpu_place(place)) {
    SetTensorFromPyArray<platform::CPUPlace>(
        tensor, array, boost::get<platform::CPUPlace>(place), zero_copy);
  } else if (platform::is_gpu_place(place)) {
    SetTensorFromPyArray<platform::CUDAPlace>(
        tensor, array, boost::get<platform::CUDAPlace>(place), zero_copy);
  } else if (platform::is_cuda_pinned_place(place)) {
    SetTensorFromPyArray<platform::CUDAPinnedPlace>(
        tensor, array, boost::get<platform::CUDAPinnedPlace>(place), zero_copy);
92
  } else {
L
Leo Chen 已提交
93 94
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Place should be one of CPUPlace/CUDAPlace/CUDAPinnedPlace"));
J
Jiabin Yang 已提交
95
  }
L
Leo Chen 已提交
96
  self->SetPersistable(persistable);
97 98 99 100 101 102 103 104
  self->SetType(framework::proto::VarType::LOD_TENSOR);
  self->SetDataType(tensor->type());
}

static void InitVarBaseFromNumpyWithKwargs(imperative::VarBase *self,
                                           const py::kwargs &kwargs) {
  PADDLE_ENFORCE_EQ(
      kwargs.contains("value"), true,
105 106
      platform::errors::NotFound(
          "The kwargs used to create Varbase misses argument: value"));
L
Leo Chen 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119

  auto persistable = kwargs.contains("persistable")
                         ? kwargs["persistable"].cast<bool>()
                         : false;
  auto array = kwargs.contains("value") ? kwargs["value"].cast<py::array>()
                                        : py::array();
  auto zero_copy =
      kwargs.contains("zero_copy") ? kwargs["zero_copy"].cast<bool>() : false;
  auto name = kwargs.contains("name") ? kwargs["name"].cast<std::string>() : "";
  auto default_place = imperative::GetCurrentTracer()->ExpectedPlace();
  auto place = kwargs.contains("place") ? PyObjectToPlace(kwargs["place"])
                                        : default_place;
  InitTensorForVarBase(self, array, place, persistable, zero_copy, name);
120
}
121

122 123 124
template <typename P>
static void InitVarBaseFromNumpyWithArg(imperative::VarBase *self,
                                        const py::array &array, const P &place,
L
Leo Chen 已提交
125 126 127 128 129 130 131 132
                                        bool persistable = false,
                                        bool zero_copy = false,
                                        std::string name = "") {
  // 0: self, 1: value, 2: place, 3: persistable, 4: zero_copy, 5: name
  if (name == "") {
    name = imperative::GetCurrentTracer()->GenerateUniqueName("generated_var");
  }
  new (self) imperative::VarBase(name);
133 134 135 136 137 138 139 140
  self->SetPersistable(persistable);
  auto *tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
  SetTensorFromPyArray<P>(tensor, array, place, zero_copy);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
  self->SetDataType(tensor->type());
}

static void InitVarBaseFromNumpyWithArgDefault(imperative::VarBase *self,
L
Leo Chen 已提交
141 142 143
                                               const py::array &array) {
  auto place = imperative::GetCurrentTracer()->ExpectedPlace();
  InitTensorForVarBase(self, array, place);
144
}
145

146 147 148 149 150
static std::string GetTypeName(const imperative::VarBase &var) {
  if (var.Type() == framework::proto::VarType::RAW) {
    return "RAW";
  } else if (!var.Var().IsInitialized()) {
    return "nullptr";
151
  } else {
152
    return framework::ToTypeName(var.Var().Type());
153 154
  }
}
L
Leo Chen 已提交
155

156
using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;
157 158 159 160 161 162

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
163 164
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s", typeid(T).name()));
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
  }
}

// NOTE(zjl): py::handle is a very light wrapper of PyObject *.
// Unlike py::object, py::handle does not change reference count of PyObject *.
static std::vector<std::shared_ptr<imperative::VarBase>>
GetVarBaseListFromPyHandle(const py::handle &handle) {
  PyObject *py_obj = handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    return {};
  }

  std::vector<std::shared_ptr<imperative::VarBase>> result;

180
  if (PyList_Check(py_obj)) {  // List of VarBase
181 182 183
    size_t len = PyList_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
184 185 186
      PyObject *py_ivar = PyList_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
187 188 189
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
190
  } else if (PyTuple_Check(py_obj)) {  // Tuple of VarBase
191 192 193
    size_t len = PyTuple_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
194 195 196
      PyObject *py_ivar = PyTuple_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
197 198 199
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
200 201 202
  } else {  // VarBase
    result.emplace_back(
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
203 204 205 206 207
  }

  return result;
}

J
Jiabin Yang 已提交
208 209 210
static imperative::NameVarBaseMap ConvertToNameVarBaseMap(
    const PyNameVarBaseMap &map) {
  imperative::NameVarBaseMap result;
211 212 213 214 215 216
  for (auto &pair : map) {
    auto var_vec = GetVarBaseListFromPyHandle(pair.second);
    if (!var_vec.empty()) {
      result.emplace(pair.first, std::move(var_vec));
    }
  }
J
Jiabin Yang 已提交
217

218 219 220
  PADDLE_ENFORCE_EQ(
      PyErr_Occurred(), nullptr,
      platform::errors::InvalidArgument(py::str(py::handle(PyErr_Occurred()))));
221 222 223
  return result;
}

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
static bool PyCheckInteger(PyObject *obj) {
#if PY_VERSION_HEX < 0x03000000
  return (PyLong_Check(obj) || PyInt_Check(obj)) && !PyBool_Check(obj);
#else
  return PyLong_Check(obj) && !PyBool_Check(obj);
#endif
}

// NOTE(zhiqiu): Revised version of PySlice_GetIndices. From:
// https://github.com/python/cpython/blob/8d21aa21f2cbc6d50aab3f420bb23be1d081dac4/Objects/sliceobject.c#L103
// Original PySlice_GetIndices return wrong result when
// slice_item contains long int, such as arr[:180L].
// NOT sure why this happens !!!
// Besides, PySlice_GetIndices cannot raise error when float in slice item.
// So, I make a revised version of PySlice_GetIndices, named to
// _PySlice_GetIndices. Try to use _PySlice_Unpack which is more robust than
// PySlice_GetIndices in the future.
static int _PySlice_GetIndices(PySliceObject *r, Py_ssize_t length,
                               Py_ssize_t *start, Py_ssize_t *stop,
                               Py_ssize_t *step) {
  /* XXX support long ints */
  if (r->step == Py_None) {
    *step = 1;
  } else {
    if (PyCheckInteger(r->step)) {
      *step = PyLong_AsLong(r->step);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Currently, VarBase.__getitem__() only allows None or integers in "
          "slice item, but received %s.",
          std::string(Py_TYPE(r->step)->tp_name)));
    }
  }
  if (r->start == Py_None) {
    *start = *step < 0 ? length - 1 : 0;
  } else {
    if (PyCheckInteger(r->start)) {
      *start = PyLong_AsLong(r->start);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Currently, VarBase.__getitem__() only allows None or integers in "
          "slice item, but received %s.",
          std::string(Py_TYPE(r->start)->tp_name)));
    }
    if (*start < 0) *start += length;
  }
  if (r->stop == Py_None) {
    *stop = *step < 0 ? -1 : length;
  } else {
    if (PyCheckInteger(r->stop)) {
      *stop = PyLong_AsLong(r->stop);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Currently, VarBase.__getitem__() only allows None or integers in "
          "slice item, but received %s.",
          std::string(Py_TYPE(r->stop)->tp_name)));
    }
    if (*stop < 0) *stop += length;
  }
  if (*stop > length) return -1;
  if (*start >= length) return -1;
  if (*step == 0) return -1;
  return 0;
}

S
songyouwei 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
static void ParseIndexingSlice(framework::LoDTensor *tensor, PyObject *_index,
                               std::vector<int> *slice_axes,
                               std::vector<int> *slice_starts,
                               std::vector<int> *slice_ends,
                               std::vector<int> *slice_strides,
                               std::vector<int> *decrease_axis,
                               std::vector<int> *infer_flags) {
  // We allow indexing by Integers, Slices, and tuples of those
  // types.
  // Ellipsis and None are not supported yet.
  // wrap to tuple
  PyObject *index = !PyTuple_Check(_index) ? PyTuple_Pack(1, _index) : _index;
  PADDLE_ENFORCE_EQ(
      tensor->IsInitialized(), true,
      platform::errors::InvalidArgument("tensor has not been initialized"));
  const auto &shape = tensor->dims();
  const int rank = shape.size();
  const int size = PyTuple_GET_SIZE(index);
  PADDLE_ENFORCE_EQ(
      size <= rank, true,
      platform::errors::InvalidArgument(
          "too many indices (%d) for tensor of dimension %d", size, rank));
  for (int dim = 0; dim < size; ++dim) {
    PyObject *slice_item = PyTuple_GetItem(index, dim);
313 314 315 316 317 318 319
    PADDLE_ENFORCE_EQ(PyCheckInteger(slice_item) || PySlice_Check(slice_item),
                      true,
                      platform::errors::InvalidArgument(
                          "Currently, VarBase.__getitem__() only allows "
                          "indexing by Integers, Slices, and tuples of "
                          "these types, but received %s in %dth slice item",
                          std::string(Py_TYPE(slice_item)->tp_name), dim + 1));
S
songyouwei 已提交
320 321
    infer_flags->push_back(1);
    int dim_len = shape[dim];
322 323
    if (PyCheckInteger(slice_item)) {
      // integer, PyLong_AsLong supports both int and long
S
songyouwei 已提交
324
      int start = static_cast<int>(PyLong_AsLong(slice_item));
325
      auto s_t = start;
S
songyouwei 已提交
326
      start = start < 0 ? start + dim_len : start;
327 328 329 330 331 332 333 334 335 336
      if (start >= dim_len) {
        std::string str_error_message =
            "The starting index " + std::to_string(s_t) +
            " of slice is out of bounds in tensor " + std::to_string(dim) +
            "-th axis, it shound be in the range of [" +
            std::to_string(-dim_len) + ", " + std::to_string(dim_len) + ")";
        // py::index_error is corresponding to IndexError in Python
        // Used to indicate out of bounds access in __getitem__, __setitem__
        throw py::index_error(str_error_message);
      }
S
songyouwei 已提交
337 338 339 340 341 342
      slice_axes->push_back(dim);
      slice_starts->push_back(start);
      slice_ends->push_back(start + 1);
      slice_strides->push_back(1);
      decrease_axis->push_back(dim);
    } else {
343
      // slice item
S
songyouwei 已提交
344
      Py_ssize_t start, end, step;
345 346 347
      PySliceObject *p = reinterpret_cast<PySliceObject *>(slice_item);
      _PySlice_GetIndices(p, dim_len, &start, &end, &step);

S
songyouwei 已提交
348
      // :: or : or 0:dim_len:1
349 350 351
      if (start == 0 && end == dim_len && step == 1) {
        continue;
      }
S
songyouwei 已提交
352 353 354 355 356 357 358 359 360
      slice_axes->push_back(dim);
      slice_starts->push_back(start);
      slice_ends->push_back(end);
      slice_strides->push_back(step);
    }
  }
  if (!PyTuple_Check(_index)) Py_DecRef(index);
}

361
// Bind Methods
J
Jiabin Yang 已提交
362
void BindImperative(py::module *m_ptr) {
363 364
  auto &m = *m_ptr;

365 366
  BindOpFunctions(&m);

367 368
#ifndef _WIN32
  // Dygraph DataLoader signal handler
369 370 371 372 373 374 375 376 377 378 379 380 381
  m.def("_set_process_pids", [](int64_t key, py::object &obj) {
    PADDLE_ENFORCE_EQ(
        py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj), true,
        platform::errors::InvalidArgument(
            "The subprocess ids set in DataLoader is illegal."
            "Expected data type is tuple or list, but received %s",
            obj.get_type()));
    py::list pids = py::cast<py::list>(obj);
    std::set<pid_t> pids_set = {};
    for (size_t i = 0; i < pids.size(); i++) {
      pids_set.insert(pids[i].cast<pid_t>());
    }
    imperative::SetLoadProcessPIDs(key, pids_set);
382
  });
383 384
  m.def("_erase_process_pids",
        [](int64_t key) { imperative::EraseLoadProcessPIDs(key); });
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
  m.def("_set_process_signal_handler",
        []() { imperative::SetLoadProcessSignalHandler(); });
  m.def("_throw_error_if_process_failed",
        []() { imperative::ThrowErrorIfLoadProcessFailed(); });

  // Dygraph DataLoader reader process & thread related functions
  m.def(
      "_convert_to_tensor_list",
      [](py::object &obj) -> py::list {
        // 0. input data check
        PADDLE_ENFORCE(
            py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj),
            platform::errors::InvalidArgument(
                "The batch data read into DataLoader is illegal."
                "Expected data type is tuple or list, but received %s",
                obj.get_type()));
        py::list batch = py::cast<py::list>(obj);
        py::list tensors;
        for (size_t i = 0; i < batch.size(); ++i) {
          // 1. cast to python array
          auto array = batch[i].cast<py::array>();
          PADDLE_ENFORCE_NE(
              string::Sprintf("%s", array.dtype()).compare("object"), 0,
              platform::errors::InvalidArgument(
                  "Faild to convert input data to a regular ndarray.\n  * "
                  "Usually this means the input data contains nested "
                  "lists with different lengths.\n  * Check the reader "
                  "function passed to 'set_(sample/sample_list/batch)"
                  "_generator' to locate the data causes this issue."));
          // 2. construcct LoDTensor
          framework::LoDTensor t;
          SetTensorFromPyArray<platform::CPUPlace>(&t, array,
                                                   platform::CPUPlace(), true);
          // 3. allocate shared memory
          void *data_ptr = t.data<void>();
          size_t data_size = t.numel() * framework::SizeOfType(t.type());
          auto shared_writer_holder =
              memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
          // 4. maintain mmap fd set & backup ipc_name
          const std::string &ipc_name = shared_writer_holder->ipc_name();
          memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
          // 5. copy data & reset holder
          memory::Copy(platform::CPUPlace(), shared_writer_holder->ptr(),
                       platform::CPUPlace(), data_ptr, data_size);
          t.ResetHolder(shared_writer_holder);
          // 6. append to result list
          tensors.append(t);
        }
        return tensors;
      },
      py::return_value_policy::take_ownership);

  m.def("_remove_tensor_list_mmap_fds", [](py::list &tensor_list) {
    for (size_t i = 0; i < tensor_list.size(); ++i) {
      auto t = tensor_list[i].cast<framework::LoDTensor>();
      auto *mmap_writer_allocation =
          dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
              t.Holder().get());
      PADDLE_ENFORCE_NOT_NULL(
          mmap_writer_allocation,
          platform::errors::NotFound("The shared memory of LoDTensor in "
                                     "DataLoader's child process has been "
                                     "released."));
      memory::allocation::MemoryMapFdSet::Instance().Remove(
          mmap_writer_allocation->ipc_name());
    }
  });

  m.def("_cleanup_mmap_fds",
        []() { memory::allocation::MemoryMapFdSet::Instance().Clear(); });
#endif

457
  py::class_<imperative::detail::BackwardStrategy> backward_strategy(
458 459
      m, "BackwardStrategy", R"DOC(

J
Jiabin Yang 已提交
460
    BackwardStrategy is a descriptor of how to run the backward process.
461

J
Jiabin Yang 已提交
462
    **Note**:
T
tianshuo78520a 已提交
463
        **This API is only available in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **Mode**
464

J
Jiabin Yang 已提交
465 466
    Attribute:
        **sort_sum_gradient**:
467

J
Jiabin Yang 已提交
468
        If framework will sum the gradient by the reverse order of trace. eg. x_var ( :ref:`api_guide_Variable` ) will be the input of multiple OP such as :ref:`api_fluid_layers_scale` , this attr will decide if framework will sum gradient of `x_var` by the reverse order.
L
lujun 已提交
469

J
Jiabin Yang 已提交
470
        By Default: False
L
lujun 已提交
471

J
Jiabin Yang 已提交
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
        Examples:
            .. code-block:: python

                import numpy as np
                import paddle.fluid as fluid

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    x_var = fluid.dygraph.to_variable(x)
                    sums_inputs = []
                    # x_var will be multi-scales' input here
                    for _ in range(10):
                        sums_inputs.append(fluid.layers.scale(x_var))
                    ret2 = fluid.layers.sums(sums_inputs)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
490
      )DOC");
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
  backward_strategy.def(py::init())
      .def_property("sort_sum_gradient",
                    [](const imperative::detail::BackwardStrategy &self) {
                      return self.sorted_sum_gradient_;
                    },
                    [](imperative::detail::BackwardStrategy &self,
                       bool sorted_sum_gradient) {
                      self.sorted_sum_gradient_ = sorted_sum_gradient;
                    });

  m.def("start_imperative_gperf_profiler",
        []() { imperative::StartProfile(); });

  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });

Z
Zeng Jinle 已提交
506 507 508
  m.def("_is_dygraph_debug_enabled",
        []() { return imperative::IsDebugEnabled(); });
  m.def("_dygraph_debug_level", []() { return imperative::GetDebugLevel(); });
509 510 511 512
  m.def("_switch_tracer",
        [](const std::shared_ptr<imperative::Tracer> &tracer) {
          imperative::SetCurrentTracer(tracer);
        });
Z
Zeng Jinle 已提交
513

514
  py::class_<imperative::VarBase, std::shared_ptr<imperative::VarBase>>(
J
Jiabin Yang 已提交
515 516
      m, "VarBase",
      R"DOC()DOC")
Z
Zeng Jinle 已提交
517
      .def_static("_alive_vars", &imperative::VarBase::AliveVarNames)
J
Jiabin Yang 已提交
518
      .def("__init__",
519 520 521 522 523 524 525 526 527 528 529
           [](imperative::VarBase &self, framework::proto::VarType::Type dtype,
              const std::vector<int> &dims, const py::handle &name,
              framework::proto::VarType::Type type, bool persistable) {
             std::string act_name = "";
             if (!name.ptr() || name.ptr() == Py_None) {
               act_name = imperative::GetCurrentTracer()->GenerateUniqueName(
                   "generated_var");
             } else {
               act_name = name.cast<std::string>();
             }
             new (&self) imperative::VarBase(act_name);
J
Jiabin Yang 已提交
530 531 532 533 534 535 536 537 538
             self.SetPersistable(persistable);
             self.SetType(type);
             self.SetDataType(dtype);
             if (type == framework::proto::VarType::LOD_TENSOR) {
               auto *tensor =
                   self.MutableVar()->GetMutable<framework::LoDTensor>();
               tensor->Resize(framework::make_ddim(dims));
             }
           })
539 540
      .def("__init__", &InitVarBaseFromNumpyWithArg<platform::CPUPlace>,
           py::arg("value"), py::arg("place"), py::arg("persistable") = false,
L
Leo Chen 已提交
541
           py::arg("zero_copy") = false, py::arg("name") = "")
542 543
      .def("__init__", &InitVarBaseFromNumpyWithArg<platform::CUDAPlace>,
           py::arg("value"), py::arg("place"), py::arg("persistable") = false,
L
Leo Chen 已提交
544
           py::arg("zero_copy") = false, py::arg("name") = "")
545 546
      .def("__init__", &InitVarBaseFromNumpyWithArg<platform::CUDAPinnedPlace>,
           py::arg("value"), py::arg("place"), py::arg("persistable") = false,
L
Leo Chen 已提交
547 548
           py::arg("zero_copy") = false, py::arg("name") = "")
      .def("__init__", &InitVarBaseFromNumpyWithArgDefault, py::arg("value"))
549
      .def("__init__", &InitVarBaseFromNumpyWithKwargs)
550
      .def("__getitem__",
S
songyouwei 已提交
551
           [](std::shared_ptr<imperative::VarBase> &self, py::handle _index) {
552
             std::vector<int> slice_axes, slice_starts, slice_ends,
S
songyouwei 已提交
553 554 555 556 557 558
                 slice_strides, decrease_axis, infer_flags;
             auto tensor =
                 self->MutableVar()->GetMutable<framework::LoDTensor>();
             ParseIndexingSlice(tensor, _index.ptr(), &slice_axes,
                                &slice_starts, &slice_ends, &slice_strides,
                                &decrease_axis, &infer_flags);
559 560 561 562
             // release gil and do tracing
             py::gil_scoped_release release;
             const auto &tracer = imperative::GetCurrentTracer();
             if (slice_axes.empty()) {
S
songyouwei 已提交
563
               return self;
564
             } else {
S
songyouwei 已提交
565
               imperative::NameVarBaseMap ins = {{"Input", {self}}};
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
               framework::AttributeMap attrs = {
                   {"axes", slice_axes},
                   {"starts", slice_starts},
                   {"ends", slice_ends},
                   {"infer_flags", infer_flags},
                   {"decrease_axis", decrease_axis}};
               auto out = std::shared_ptr<imperative::VarBase>(
                   new imperative::VarBase(tracer->GenerateUniqueName()));
               imperative::NameVarBaseMap outs = {{"Out", {out}}};
               std::string op_type = "slice";
               for (auto stride : slice_strides) {
                 if (stride != 1) {
                   op_type = "strided_slice";
                   attrs.insert({"strides", slice_strides});
                   attrs.erase("decrease_axis");
                   break;
                 }
               }
               tracer->TraceOp(op_type, ins, outs, std::move(attrs));
               return out;
             }
           })
588 589 590 591 592 593 594
      .def("numpy",
           [](imperative::VarBase &self) -> py::array {
             const auto &tensor =
                 self.MutableVar()->Get<framework::LoDTensor>();
             PADDLE_ENFORCE_EQ(
                 tensor.IsInitialized(), true,
                 platform::errors::InvalidArgument(
595
                     "Tensor of %s is Empty, please check if it has no data.",
596 597 598 599 600
                     self.Name()));
             return TensorToPyArray(tensor, true);
           },
           R"DOC(
        **Notes**:
T
tianshuo78520a 已提交
601
            **This API is ONLY available in Dygraph mode**
602 603 604 605 606 607 608 609 610 611 612 613 614 615

        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
            ndarray: dtype is same as current Variable

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
616
                from paddle.fluid.dygraph import Linear
617 618 619 620
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
621
                    linear = Linear(32, 64)
622
                    data = to_variable(data)
623
                    x = linear(data)
624 625 626 627 628 629 630 631 632 633 634 635 636
                    print(x.numpy())

       )DOC")
      .def("detach",
           [](const imperative::VarBase &self) {
             const auto &tensor = self.Var().Get<framework::LoDTensor>();
             PADDLE_ENFORCE_EQ(tensor.IsInitialized(), true,
                               platform::errors::InvalidArgument(
                                   "%s has not been initialized", self.Name()));
             return self.NewVarBase(tensor.place(), false);
           },
           py::return_value_policy::copy, R"DOC(
        **Notes**:
T
tianshuo78520a 已提交
637
            **This API is ONLY available in Dygraph mode**
638 639 640 641 642 643 644 645 646 647 648 649

        Returns a new Variable, detached from the current graph.

        Returns:
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.


        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
650
                from paddle.fluid.dygraph import Linear
651 652 653 654
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
655
                    linear = Linear(32, 64)
656
                    data = to_variable(data)
657
                    x = linear(data)
658 659 660 661 662 663
                    y = x.detach()

       )DOC")
      .def("clear_gradient", &imperative::VarBase::ClearGradient, R"DOC(

        **Notes**:
T
tianshuo78520a 已提交
664
        **1. This API is ONLY available in Dygraph mode**
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693

        **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**

        Clear  (set to ``0`` ) the Gradient of Current Variable

        Returns:  None

        Examples:
             .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                         tmp = fluid.dygraph.base.to_variable(x)
                         tmp.stop_gradient=False
                         inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))
      )DOC")
L
Leo Chen 已提交
694 695 696 697
      .def("_run_backward",
           [](imperative::VarBase &self,
              const imperative::detail::BackwardStrategy &bckst,
              const imperative::Tracer &tracer) {
698 699
             // TODO(jiabin): when we impl more backward execution we can
             // select them
700
             auto *engine = tracer.GetEngine();
L
Leo Chen 已提交
701
             engine->Init(&self, bckst);
702
             VLOG(3) << "Start backward";
L
Leo Chen 已提交
703 704 705 706 707 708 709 710 711 712
             engine->Execute();
             VLOG(3) << "Finish backward";
           },
           py::call_guard<py::gil_scoped_release>())
      .def("_grad_name", &imperative::VarBase::GradVarName)
      .def("_grad_value",
           [](imperative::VarBase &self) {
             return self.MutableGradVar()->Get<framework::LoDTensor>();
           },
           py::return_value_policy::reference)
713 714 715 716
      .def("_set_grad_type",
           [](imperative::VarBase &self, framework::proto::VarType::Type type) {
             self.MutableGradVarBase()->SetType(type);
           })
717
      .def("_grad_ivar",
J
Jiabin Yang 已提交
718 719
           [](const imperative::VarBase &self) {
             auto &grad_var = self.GradVarBase();
720 721 722 723 724 725 726 727 728 729 730
             if (grad_var && grad_var->Var().IsInitialized()) {
               auto *tensor =
                   grad_var->MutableVar()->IsType<framework::LoDTensor>()
                       ? grad_var->MutableVar()
                             ->GetMutable<framework::LoDTensor>()
                       : grad_var->MutableVar()
                             ->GetMutable<framework::SelectedRows>()
                             ->mutable_value();
               if (tensor->IsInitialized()) {
                 return grad_var;
               }
J
Jiabin Yang 已提交
731
             }
732
             return std::shared_ptr<imperative::VarBase>(nullptr);
J
Jiabin Yang 已提交
733 734
           },
           py::return_value_policy::copy)
735 736
      .def("_copy_to",
           [](const imperative::VarBase &self, const platform::CPUPlace &place,
J
Jiabin Yang 已提交
737 738
              bool blocking) { return self.NewVarBase(place, blocking); },
           py::return_value_policy::copy)
739 740
      .def("_copy_to",
           [](const imperative::VarBase &self, const platform::CUDAPlace &place,
J
Jiabin Yang 已提交
741 742 743
              bool blocking) { return self.NewVarBase(place, blocking); },
           py::return_value_policy::copy)
      .def("value", [](imperative::VarBase &self) { return self.MutableVar(); },
744 745 746
           py::return_value_policy::reference)
      .def_property("name", &imperative::VarBase::Name,
                    &imperative::VarBase::SetName)
L
Leo Chen 已提交
747 748 749 750 751
      .def_property("stop_gradient",
                    &imperative::VarBase::OverridedStopGradient,
                    &imperative::VarBase::SetOverridedStopGradient)
      .def_property("persistable", &imperative::VarBase::Persistable,
                    &imperative::VarBase::SetPersistable)
J
Jiabin Yang 已提交
752 753 754 755
      .def_property_readonly(
          "shape",
          [](imperative::VarBase &self) {
            if (self.Var().IsType<framework::LoDTensor>()) {
756
              return framework::vectorize<int>(
J
Jiabin Yang 已提交
757
                  self.Var().Get<framework::LoDTensor>().dims());
758 759 760
            } else if (self.Var().IsType<framework::SelectedRows>()) {
              return framework::vectorize<int>(
                  self.Var().Get<framework::SelectedRows>().value().dims());
J
Jiabin Yang 已提交
761 762 763 764 765 766 767
            } else {
              VLOG(2) << "It is meaningless to get shape of variable type "
                      << GetTypeName(self);
              return std::vector<int>();
            }
          })
      .def_property_readonly("type", &imperative::VarBase::Type)
L
Leo Chen 已提交
768
      .def_property_readonly("dtype", &imperative::VarBase::DataType);
769 770 771

  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
  layer.def(py::init<>())
772 773 774 775 776
      .def("forward",
           [](imperative::Layer &self,
              const std::vector<std::shared_ptr<imperative::VarBase>> &inputs) {
             return self.Forward(inputs);
           });
777

778 779 780 781 782
  py::class_<imperative::jit::ProgramDescTracer>(m, "ProgramDescTracer", "")
      .def("create_program_desc",
           &imperative::jit::ProgramDescTracer::CreateProgramDesc)
      .def("reset", &imperative::jit::ProgramDescTracer::Reset);

783 784 785
  py::class_<imperative::Tracer, std::shared_ptr<imperative::Tracer>>(
      m, "Tracer",
      R"DOC()DOC")
786
      .def("__init__",
J
Jiabin Yang 已提交
787
           [](imperative::Tracer &self) { new (&self) imperative::Tracer(); })
788 789 790
      .def_property("_enable_program_desc_tracing",
                    &imperative::Tracer::IsProgramDescTracingEnabled,
                    &imperative::Tracer::SetEnableProgramDescTracing)
791 792
      .def_property("_train_mode", &imperative::Tracer::HasGrad,
                    &imperative::Tracer::SetHasGrad)
793 794 795 796 797 798 799 800
      .def_property(
          "_expected_place",
          [](const imperative::Tracer &self) -> py::object {
            return py::cast(self.ExpectedPlace());
          },
          [](imperative::Tracer &self, const py::object &obj) {
            if (py::isinstance<platform::CUDAPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPlace *>();
L
Leo Chen 已提交
801
              self.SetExpectedPlace(*p);
802 803
            } else if (py::isinstance<platform::CPUPlace>(obj)) {
              auto p = obj.cast<platform::CPUPlace *>();
L
Leo Chen 已提交
804
              self.SetExpectedPlace(*p);
805 806
            } else if (py::isinstance<platform::CUDAPinnedPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPinnedPlace *>();
L
Leo Chen 已提交
807
              self.SetExpectedPlace(*p);
808
            } else {
L
Leo Chen 已提交
809
              PADDLE_THROW(platform::errors::InvalidArgument(
810
                  "Incompatible Place Type: supports CUDAPlace, CPUPlace, "
L
Leo Chen 已提交
811 812
                  "and CUDAPinnedPlace, "
                  "but got Unknown Type!"));
813 814
            }
          })
815 816 817
      .def("_get_program_desc_tracer",
           &imperative::Tracer::GetProgramDescTracer,
           py::return_value_policy::reference)
M
minqiyang 已提交
818
      .def("trace",
J
Jiabin Yang 已提交
819 820 821 822 823 824
           [](imperative::Tracer &self, const std::string &type,
              const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs, const platform::CUDAPlace &place,
              bool trace_backward) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
825 826
             {
               py::gil_scoped_release release;
J
Jiabin Yang 已提交
827 828
               self.TraceOp(type, std::move(ins_map), std::move(outs_map),
                            std::move(attrs), place, trace_backward);
829
             }
M
minqiyang 已提交
830
           })
J
Jiabin Yang 已提交
831 832 833 834 835 836 837 838 839 840 841 842 843
      .def("trace",
           [](imperative::Tracer &self, const std::string &type,
              const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs, const platform::CPUPlace &place,
              bool trace_backward) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
               self.TraceOp(type, std::move(ins_map), std::move(outs_map),
                            std::move(attrs), place, trace_backward);
             }
           });
844 845

  // define parallel context
846 847 848
  py::class_<imperative::ParallelStrategy> parallel_strategy(
      m, "ParallelStrategy", "");
  parallel_strategy.def(py::init())
849 850
      .def_property(
          "nranks",
851 852
          [](const imperative::ParallelStrategy &self) { return self.nranks_; },
          [](imperative::ParallelStrategy &self, int nranks) {
853 854 855
            self.nranks_ = nranks;
          })
      .def_property("local_rank",
856
                    [](const imperative::ParallelStrategy &self) {
857 858
                      return self.local_rank_;
                    },
859
                    [](imperative::ParallelStrategy &self, int local_rank) {
860 861 862 863
                      self.local_rank_ = local_rank;
                    })
      .def_property(
          "trainer_endpoints",
864
          [](const imperative::ParallelStrategy &self) {
865 866
            return self.trainer_endpoints_;
          },
867
          [](imperative::ParallelStrategy &self, std::vector<std::string> eps) {
868 869 870
            self.trainer_endpoints_ = eps;
          })
      .def_property("current_endpoint",
871
                    [](const imperative::ParallelStrategy &self) {
872 873
                      return self.current_endpoint_;
                    },
874 875
                    [](imperative::ParallelStrategy &self,
                       const std::string &ep) { self.current_endpoint_ = ep; });
876 877 878 879 880 881 882 883 884 885

  m.def(
      "dygraph_partial_grad",
      [](const std::vector<std::shared_ptr<imperative::VarBase>> &input_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>>
             &output_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>> &output_grads,
         const std::vector<std::shared_ptr<imperative::VarBase>> &no_grad_vars,
         const platform::Place &place,
         const imperative::detail::BackwardStrategy &strategy,
Z
Zeng Jinle 已提交
886 887 888 889 890
         bool create_graph, bool retain_graph, bool allow_unused,
         bool only_inputs) {
        imperative::PartialGradEngine engine(
            input_targets, output_targets, output_grads, no_grad_vars, place,
            strategy, create_graph, retain_graph, allow_unused, only_inputs);
891 892 893 894 895
        engine.Execute();
        return engine.GetResult();
      },
      py::call_guard<py::gil_scoped_release>());

896
#if defined(PADDLE_WITH_NCCL)
897 898
  py::class_<imperative::NCCLParallelContext> nccl_ctx(m,
                                                       "NCCLParallelContext");
899 900

  nccl_ctx
901 902 903
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CUDAPlace &>())
      .def("init", [](imperative::NCCLParallelContext &self) { self.Init(); });
904
#endif
905 906 907 908
}

}  // namespace pybind
}  // namespace paddle