ContextProjectionOp.cpp 11.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "ContextProjectionOp.h"
16 17 18 19
#include "paddle/math/Matrix.h"
#include "paddle/math/Vector.h"

namespace paddle {
X
xutianbing 已提交
20 21 22 23
/**
 * Context Projection Forward with CPU Matrix Device.
 *
 */
24
template <>
25 26 27
void ContextProjectionForward<DEVICE_TYPE_CPU>(CpuMatrix& out_mat,
                                               const CpuMatrix& input_mat,
                                               const CpuMatrix& weight_mat,
28
                                               const CpuIVector& seq_vec,
29 30
                                               size_t context_length,
                                               int context_start,
31
                                               size_t begin_pad) {
32 33 34 35 36 37 38 39 40 41 42
  const int* starts = seq_vec.getData();
  const size_t num_sequences = seq_vec.getSize() - 1;
  for (size_t i = 0; i < num_sequences; ++i) {
    for (size_t j = 0; j < context_length; ++j) {
      int begin = starts[i] + context_start + j;
      int end = starts[i + 1] + context_start + j;
      int dst_begin = starts[i];
      int dst_end = starts[i + 1];
      if (begin < starts[i]) {
        int64_t pad_size =
            std::min(starts[i] - begin, starts[i + 1] - starts[i]);
43 44 45 46 47
        MatrixPtr mat = out_mat.subMatrix(starts[i], pad_size);
        if (weight_mat) {
          MatrixPtr sub =
              const_cast<CpuMatrix&>(weight_mat).subMatrix(j, pad_size);
          mat->addAtOffset(*sub, j * input_mat.getWidth());
48 49 50 51 52 53 54
        }
        dst_begin = starts[i] + pad_size;
        begin = starts[i];
      }
      if (end > starts[i + 1]) {
        int64_t pad_size =
            std::min(end - starts[i + 1], starts[i + 1] - starts[i]);
55 56 57 58 59 60 61
        MatrixPtr mat = out_mat.subMatrix(starts[i + 1] - pad_size, pad_size);
        if (weight_mat) {
          MatrixPtr sub =
              const_cast<CpuMatrix&>(weight_mat)
                  .subMatrix(begin_pad + context_start + j - pad_size,
                             pad_size);
          mat->addAtOffset(*sub, j * input_mat.getWidth());
62 63 64 65 66
        }
        dst_end = starts[i + 1] - pad_size;
        end = starts[i + 1];
      }
      if (end <= begin) continue;
67 68 69 70
      MatrixPtr src =
          const_cast<CpuMatrix&>(input_mat).subMatrix(begin, end - begin);
      MatrixPtr dst = out_mat.subMatrix(dst_begin, dst_end - dst_begin);
      dst->addAtOffset(*src, j * input_mat.getWidth());
71 72 73 74 75
    }
  }
}

/**
X
xutianbing 已提交
76 77 78 79 80 81 82
 * Paddle Function for Context Projection Forward.
 * Calculate the value for the output layer with context projection.
 *
 * What is Context Projection?
 * For example, assumed input (x) has 4 words and the dimension of each word
 * representation is 2. If we use zero to pad instead of learned weight to pad,
 * and the context_lenth is 3, the output (y) is:
83
 *
X
xutianbing 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
 * @code
 *  x = [a1, a2;
 *       b1, b2;
 *       c1, c2;
 *       d1, d2]
 *  y = [0,  0,  a1, a2, b1, b2;
 *       a1, a2, b1, b2, c1, c2;
 *       b1, b2, c1, c2, d1, d2;
 *       c1, c2, d1, d2, 0,  0]
 * @endcode
 *
 * \param outputs[0] output value.
 * \param inputs[0]  input value.
 * \param inputs[1]  input weight.
 * \param inputs[2]  input sequence.
99 100 101 102 103 104 105 106 107 108
 */
template <DeviceType Device>
class ContextProjectionForwardFunc : public FunctionBase {
public:
  void init(const FuncConfig& config) override {
    context_length_ = config.get<size_t>("context_length");
    context_start_ = config.get<int>("context_start");
    begin_pad_ = config.get<size_t>("begin_pad");
  }

109
  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
H
hedaoyuan 已提交
110 111
    CHECK_EQ((size_t)3, inputs.size());
    CHECK_EQ((size_t)1, outputs.size());
112

113
    CHECK(outputs[0].data() && inputs[0].data() && inputs[2].data());
114 115 116 117
    CHECK_EQ(outputs[0].shape().ndims(), (size_t)2);
    CHECK_EQ(inputs[0].shape().ndims(), (size_t)2);
    CHECK_EQ(inputs[1].shape().ndims(), (size_t)2);
    CHECK_EQ(inputs[2].shape().ndims(), (size_t)1);
118
    /// dim of output = dim of input * context_length
119
    CHECK_EQ(outputs[0].shape()[1], inputs[0].shape()[1] * context_length_);
120
    /// dim of input == dim of weight
121
    CHECK_EQ(inputs[0].shape()[1], inputs[1].shape()[1]);
122
    /// input and output has the same batch_size
123 124
    CHECK_EQ(inputs[0].shape()[0], outputs[0].shape()[0]);

125
    CHECK_EQ(outputs[0].getArgType(), ADD_TO);
126
    auto out_mat = outputs[0].matrix<Device>();
127 128 129 130 131
    const auto in_mat = inputs[0].matrix<Device>();
    const auto w_mat =
        !inputs[1].data() ? typename Tensor<real, Device>::Matrix(nullptr, 0, 0)
                          : inputs[1].matrix<Device>();
    const auto seq_vec = inputs[2].vector<int, Device>();
132 133 134
    ContextProjectionForward<Device>(out_mat,
                                     in_mat,
                                     w_mat,
135
                                     seq_vec,
136 137
                                     context_length_,
                                     context_start_,
138
                                     begin_pad_);
139 140 141 142 143 144 145 146
  }

private:
  size_t context_length_;
  int context_start_;
  size_t begin_pad_;
};

X
xutianbing 已提交
147 148 149 150
/**
 * Context Projection Backward with CPU Matrix Device.
 *
 */
151
template <>
152
void ContextProjectionBackward<DEVICE_TYPE_CPU>(const CpuMatrix& out_grad_mat,
153 154
                                                CpuMatrix& in_grad_mat,
                                                CpuMatrix& w_grad_mat,
155
                                                const CpuIVector& seq_vec,
156 157 158
                                                size_t context_length,
                                                int context_start,
                                                size_t begin_pad,
159 160
                                                bool is_padding,
                                                size_t total_pad) {
161 162
  size_t input_dim = in_grad_mat ? in_grad_mat.getWidth()
                                 : w_grad_mat ? w_grad_mat.getWidth() : 0;
163 164 165 166 167 168 169 170 171 172 173 174
  const int* starts = seq_vec.getData();
  size_t num_sequences = seq_vec.getSize() - 1;
  for (size_t i = 0; i < num_sequences; ++i) {
    for (size_t j = 0; j < context_length; ++j) {
      int begin = starts[i] + context_start + j;
      int end = starts[i + 1] + context_start + j;
      int dst_begin = starts[i];
      int dst_end = starts[i + 1];
      if (begin < starts[i]) {
        int64_t pad_size =
            std::min(starts[i] - begin, starts[i + 1] - starts[i]);
        if (is_padding && w_grad_mat) {
175 176
          MatrixPtr mat = const_cast<CpuMatrix&>(out_grad_mat)
                              .subMatrix(starts[i], pad_size);
177
          MatrixPtr sub = w_grad_mat.subMatrix(j, pad_size);
178 179 180 181 182 183 184 185 186
          sub->addAtOffset(*mat, j * input_dim);
        }
        dst_begin = starts[i] + pad_size;
        begin = starts[i];
      }
      if (end > starts[i + 1]) {
        int64_t pad_size =
            std::min(end - starts[i + 1], starts[i + 1] - starts[i]);
        if (is_padding && w_grad_mat) {
187 188
          MatrixPtr mat = const_cast<CpuMatrix&>(out_grad_mat)
                              .subMatrix(starts[i + 1] - pad_size, pad_size);
189
          MatrixPtr sub = w_grad_mat.subMatrix(
190 191 192 193 194 195 196 197
              begin_pad + context_start + j - pad_size, pad_size);
          sub->addAtOffset(*mat, j * input_dim);
        }
        dst_end = starts[i + 1] - pad_size;
        end = starts[i + 1];
      }
      if (end <= begin) continue;
      if (!in_grad_mat) continue;
198
      MatrixPtr src = in_grad_mat.subMatrix(begin, end - begin);
199 200
      MatrixPtr dst = const_cast<CpuMatrix&>(out_grad_mat)
                          .subMatrix(dst_begin, dst_end - dst_begin);
201 202 203 204 205 206
      src->addAtOffset(*dst, j * input_dim);
    }
  }
}

/**
X
xutianbing 已提交
207 208 209
 * Context Projection Backward Function.
 * Update the weight gradient and input layer gradient with backprop
 *
X
xutianbing 已提交
210 211 212 213
 * \param inputs[0].seq          input sequence.
 * \param inputs[0].matrix       output layer grad.
 * \param outputs[0]             input layer grad.
 * \param outputs[1]             weight grad.
214 215 216 217 218 219 220 221 222
 */
template <DeviceType Device>
class ContextProjectionBackwardFunc : public FunctionBase {
public:
  void init(const FuncConfig& config) override {
    context_length_ = config.get<size_t>("context_length");
    context_start_ = config.get<int>("context_start");
    begin_pad_ = config.get<size_t>("begin_pad");
    is_padding_ = config.get<bool>("is_padding");
223
    total_pad_ = config.get<size_t>("total_pad");
224 225
  }

226
  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
X
xutianbing 已提交
227
    CHECK_EQ((size_t)1, inputs.size());
228
    CHECK_EQ((size_t)2, outputs.size());
229

X
xutianbing 已提交
230 231 232 233
    const auto seqArg = dynamic_cast<const SequenceArg&>(inputs[0]);
    CHECK(seqArg.data() && inputs[0].data());
    CHECK_EQ(seqArg.shape().ndims(), (size_t)2);
    CHECK_EQ(seqArg.getSequenceIds().shape().ndims(), (size_t)1);
234 235
    CHECK_EQ(outputs[0].shape().ndims(), (size_t)2);
    CHECK_EQ(outputs[1].shape().ndims(), (size_t)2);
236

237 238 239
    /// dim of input grad == dim of weight
    CHECK_EQ(outputs[0].shape()[1], outputs[1].shape()[1]);
    /// input and output grad has the same batch_size
X
xutianbing 已提交
240
    CHECK_EQ(outputs[0].shape()[0], seqArg.shape()[0]);
241
    /// dim of output val = dim of input grad * context_length
X
xutianbing 已提交
242
    CHECK_EQ(seqArg.shape()[1], outputs[0].shape()[1] * context_length_);
243

244
    CHECK_EQ(outputs[0].getArgType(), ADD_TO);
245
    CHECK_EQ(outputs[1].getArgType(), ADD_TO);
246

X
xutianbing 已提交
247 248
    const auto seq_vec = seqArg.getSequenceIds().vector<int, Device>();
    const auto out_grad_mat = seqArg.matrix<Device>();
249
    auto in_grad_mat =
250 251 252 253
        !outputs[0].data()
            ? typename Tensor<real, Device>::Matrix(nullptr, 0, 0)
            : outputs[0].matrix<Device>();
    auto w_grad_mat = !outputs[1].data()
254
                          ? typename Tensor<real, Device>::Matrix(nullptr, 0, 0)
255
                          : outputs[1].matrix<Device>();
256 257 258
    ContextProjectionBackward<Device>(out_grad_mat,
                                      in_grad_mat,
                                      w_grad_mat,
259
                                      seq_vec,
260 261 262
                                      context_length_,
                                      context_start_,
                                      begin_pad_,
263 264
                                      is_padding_,
                                      total_pad_);
265 266 267 268 269 270 271
  }

private:
  size_t context_length_;
  int context_start_;
  size_t begin_pad_;
  bool is_padding_;
272
  size_t total_pad_;
273 274
};

275 276 277
REGISTER_TYPED_FUNC(ContextProjectionForward,
                    CPU,
                    ContextProjectionForwardFunc);
278 279 280
REGISTER_TYPED_FUNC(ContextProjectionBackward,
                    CPU,
                    ContextProjectionBackwardFunc);
281 282 283 284
#ifndef PADDLE_ONLY_CPU
REGISTER_TYPED_FUNC(ContextProjectionForward,
                    GPU,
                    ContextProjectionForwardFunc);
285 286 287
REGISTER_TYPED_FUNC(ContextProjectionBackward,
                    GPU,
                    ContextProjectionBackwardFunc);
288
#endif
289
}  // namespace paddle