prroi_pool_op.h 20.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

template <typename T>
24 25
inline HOSTDEVICE T PrRoIPoolingGetData(const T* data, const int h, const int w,
                                        const int height, const int width) {
26 27 28 29 30 31
  bool overflow = (h < 0) || (w < 0) || (h >= height) || (w >= width);
  T retVal = overflow ? 0.0f : data[h * width + w];
  return retVal;
}

template <typename T>
32 33 34 35 36 37
inline HOSTDEVICE T PrRoIPoolingMatCalculation(const T* this_data,
                                               const int s_h, const int s_w,
                                               const int e_h, const int e_w,
                                               const T y0, const T x0,
                                               const T y1, const T x1,
                                               const int h0, const int w0) {
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
  T alpha, beta, lim_alpha, lim_beta, tmp;
  T sum_out = 0;

  alpha = x0 - static_cast<T>(s_w);
  beta = y0 - static_cast<T>(s_h);
  lim_alpha = x1 - static_cast<T>(s_w);
  lim_beta = y1 - static_cast<T>(s_h);
  tmp = (lim_alpha - 0.5f * lim_alpha * lim_alpha - alpha +
         0.5f * alpha * alpha) *
        (lim_beta - 0.5f * lim_beta * lim_beta - beta + 0.5f * beta * beta);
  sum_out += PrRoIPoolingGetData(this_data, s_h, s_w, h0, w0) * tmp;

  alpha = static_cast<T>(e_w) - x1;
  lim_alpha = static_cast<T>(e_w) - x0;
  tmp = (lim_alpha - 0.5f * lim_alpha * lim_alpha - alpha +
         0.5f * alpha * alpha) *
        (lim_beta - 0.5f * lim_beta * lim_beta - beta + 0.5f * beta * beta);
  sum_out += PrRoIPoolingGetData(this_data, s_h, e_w, h0, w0) * tmp;

  alpha = x0 - static_cast<T>(s_w);
  beta = static_cast<T>(e_h) - y1;
  lim_alpha = x1 - static_cast<T>(s_w);
  lim_beta = static_cast<T>(e_h) - y0;
  tmp = (lim_alpha - 0.5f * lim_alpha * lim_alpha - alpha +
         0.5f * alpha * alpha) *
        (lim_beta - 0.5f * lim_beta * lim_beta - beta + 0.5f * beta * beta);
  sum_out += PrRoIPoolingGetData(this_data, e_h, s_w, h0, w0) * tmp;

  alpha = static_cast<T>(e_w) - x1;
  lim_alpha = static_cast<T>(e_w) - x0;
  tmp = (lim_alpha - 0.5f * lim_alpha * lim_alpha - alpha +
         0.5f * alpha * alpha) *
        (lim_beta - 0.5f * lim_beta * lim_beta - beta + 0.5f * beta * beta);
  sum_out += PrRoIPoolingGetData(this_data, e_h, e_w, h0, w0) * tmp;

  return sum_out;
}

template <typename T>
77 78 79 80 81
inline HOSTDEVICE void PrRoIPoolingDistributeDiff(T* diff, const T top_diff,
                                                  const int h, const int w,
                                                  const int height,
                                                  const int width,
                                                  const T coeff) {
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
  bool overflow = (h < 0) || (w < 0) || (h >= height) || (w >= width);
  if (!overflow) {
    *(diff + h * width + w) = top_diff * coeff;
  }
}

template <typename T, typename Functor>
HOSTDEVICE void PrRoIPoolingMatDistributeDiff(
    T* diff, const T top_diff, const int s_h, const int s_w, const int e_h,
    const int e_w, const T y0, const T x0, const T y1, const T x1, const int h0,
    const int w0, Functor functor) {
  T alpha, beta, lim_alpha, lim_beta, tmp;

  alpha = x0 - static_cast<T>(s_w);
  beta = y0 - static_cast<T>(s_h);
  lim_alpha = x1 - static_cast<T>(s_w);
  lim_beta = y1 - static_cast<T>(s_h);
  tmp = (lim_alpha - 0.5f * lim_alpha * lim_alpha - alpha +
         0.5f * alpha * alpha) *
        (lim_beta - 0.5f * lim_beta * lim_beta - beta + 0.5f * beta * beta);
  functor(diff, top_diff, s_h, s_w, h0, w0, tmp);

  alpha = static_cast<T>(e_w) - x1;
  lim_alpha = static_cast<T>(e_w) - x0;
  tmp = (lim_alpha - 0.5f * lim_alpha * lim_alpha - alpha +
         0.5f * alpha * alpha) *
        (lim_beta - 0.5f * lim_beta * lim_beta - beta + 0.5f * beta * beta);
  functor(diff, top_diff, s_h, e_w, h0, w0, tmp);

  alpha = x0 - static_cast<T>(s_w);
  beta = static_cast<T>(e_h) - y1;
  lim_alpha = x1 - static_cast<T>(s_w);
  lim_beta = static_cast<T>(e_h) - y0;
  tmp = (lim_alpha - 0.5f * lim_alpha * lim_alpha - alpha +
         0.5f * alpha * alpha) *
        (lim_beta - 0.5f * lim_beta * lim_beta - beta + 0.5f * beta * beta);
  functor(diff, top_diff, e_h, s_w, h0, w0, tmp);

  alpha = static_cast<T>(e_w) - x1;
  lim_alpha = static_cast<T>(e_w) - x0;
  tmp = (lim_alpha - 0.5f * lim_alpha * lim_alpha - alpha +
         0.5f * alpha * alpha) *
        (lim_beta - 0.5f * lim_beta * lim_beta - beta + 0.5f * beta * beta);
  functor(diff, top_diff, e_h, e_w, h0, w0, tmp);
}

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
template <typename T>
inline HOSTDEVICE void CPUAccumulateRois(T* offset, T data) {
  *offset += data;
}

template <typename T>
inline HOSTDEVICE static T PrRoIPoolingGetCoeff(T dh, T dw) {
  dw = dw > 0 ? dw : -dw;
  dh = dh > 0 ? dh : -dh;
  return (1.0f - dh) * (1.0f - dw);
}

template <typename T, typename H, typename W>
inline HOSTDEVICE static T PrRoIPoolingInterpolation(const T* data, const H h,
                                                     const W w,
                                                     const int height,
                                                     const int width) {
  T retVal = 0.0f;
  int h1 = floorf(h);
  int w1 = floorf(w);
  retVal +=
      PrRoIPoolingGetData(data, h1, w1, height, width) *
      PrRoIPoolingGetCoeff(h - static_cast<T>(h1), w - static_cast<T>(w1));
  h1 = floorf(h) + 1;
  w1 = floorf(w);
  retVal +=
      PrRoIPoolingGetData(data, h1, w1, height, width) *
      PrRoIPoolingGetCoeff(h - static_cast<T>(h1), w - static_cast<T>(w1));
  h1 = floorf(h);
  w1 = floorf(w) + 1;
  retVal +=
      PrRoIPoolingGetData(data, h1, w1, height, width) *
      PrRoIPoolingGetCoeff(h - static_cast<T>(h1), w - static_cast<T>(w1));
  h1 = floorf(h) + 1;
  w1 = floorf(w) + 1;
  retVal +=
      PrRoIPoolingGetData(data, h1, w1, height, width) *
      PrRoIPoolingGetCoeff(h - static_cast<T>(h1), w - static_cast<T>(w1));
  return retVal;
}

template <typename T>
inline HOSTDEVICE T PrRoIPoolingSingleCoorIntegral(T s, T t, T c1, T c2) {
  return 0.5f * (t * t - s * s) * c2 +
         (t - 0.5f * t * t - s + 0.5f * s * s) * c1;
}

template <typename T, typename Functor, typename MaxFunctor,
          typename MinFunctor>
inline HOSTDEVICE void PrRoIPoolingCoorBackward(
    int s_w, int e_w, int s_h, int e_h, int width, int height, T win_start_w,
    T win_start_h, T win_end_w, T win_end_h, int pw, int ph,
    const int pooled_width, const int pooled_height, T win_size,
    const float spatial_scale, const T* this_bottom_data,
    const T* this_top_data, T* this_data_grad, T* this_out_grad,
    Functor functor, MaxFunctor maxFunctor, MinFunctor minFunctor) {
  T g_x1_y = 0.f;
  T g_x2_y = 0.f;
  T g_x_y1 = 0.f;
  T g_x_y2 = 0.f;

  for (int h_iter = s_h; h_iter < e_h; ++h_iter) {
    g_x1_y += PrRoIPoolingSingleCoorIntegral(
        maxFunctor(win_start_h, static_cast<T>(h_iter)) - h_iter,
        minFunctor(win_end_h, static_cast<T>(h_iter + 1)) - h_iter,
        PrRoIPoolingInterpolation(this_bottom_data, h_iter, win_start_w, height,
                                  width),
        PrRoIPoolingInterpolation(this_bottom_data, h_iter + 1, win_start_w,
                                  height, width));

    g_x2_y += PrRoIPoolingSingleCoorIntegral(
        maxFunctor(win_start_h, static_cast<T>(h_iter)) - h_iter,
        minFunctor(win_end_h, static_cast<T>(h_iter + 1)) - h_iter,
        PrRoIPoolingInterpolation(this_bottom_data, h_iter, win_end_w, height,
                                  width),
        PrRoIPoolingInterpolation(this_bottom_data, h_iter + 1, win_end_w,
                                  height, width));
  }

  for (int w_iter = s_w; w_iter < e_w; ++w_iter) {
    g_x_y1 += PrRoIPoolingSingleCoorIntegral(
        maxFunctor(win_start_w, static_cast<T>(w_iter)) - w_iter,
        minFunctor(win_end_w, static_cast<T>(w_iter + 1)) - w_iter,
        PrRoIPoolingInterpolation(this_bottom_data, win_start_h, w_iter, height,
                                  width),
        PrRoIPoolingInterpolation(this_bottom_data, win_start_h, w_iter + 1,
                                  height, width));

    g_x_y2 += PrRoIPoolingSingleCoorIntegral(
        maxFunctor(win_start_w, static_cast<T>(w_iter)) - w_iter,
        minFunctor(win_end_w, static_cast<T>(w_iter + 1)) - w_iter,
        PrRoIPoolingInterpolation(this_bottom_data, win_end_h, w_iter, height,
                                  width),
        PrRoIPoolingInterpolation(this_bottom_data, win_end_h, w_iter + 1,
                                  height, width));
  }

  float partial_x1 = -g_x1_y + (win_end_h - win_start_h) * (*this_top_data);
  float partial_y1 = -g_x_y1 + (win_end_w - win_start_w) * (*this_top_data);
  float partial_x2 = g_x2_y - (win_end_h - win_start_h) * (*this_top_data);
  float partial_y2 = g_x_y2 - (win_end_w - win_start_w) * (*this_top_data);

  partial_x1 = partial_x1 / win_size * spatial_scale;
  partial_x2 = partial_x2 / win_size * spatial_scale;
  partial_y1 = partial_y1 / win_size * spatial_scale;
  partial_y2 = partial_y2 / win_size * spatial_scale;

  this_data_grad[0] = 0;
  functor(this_data_grad + 1,
          (partial_x1 * (1.0 - static_cast<T>(pw) / pooled_width) +
           partial_x2 * (1.0 - static_cast<T>(pw + 1) / pooled_width)) *
              (*this_out_grad));
  functor(this_data_grad + 2,
          (partial_y1 * (1.0 - static_cast<T>(ph) / pooled_height) +
           partial_y2 * (1.0 - static_cast<T>(ph + 1) / pooled_height)) *
              (*this_out_grad));
  functor(this_data_grad + 3,
          (partial_x2 * static_cast<T>(pw + 1) / pooled_width +
           partial_x1 * static_cast<T>(pw) / pooled_width) *
              (*this_out_grad));
  functor(this_data_grad + 4,
          (partial_y2 * static_cast<T>(ph + 1) / pooled_height +
           partial_y1 * static_cast<T>(ph) / pooled_height) *
              (*this_out_grad));
}

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
template <typename DeviceContext, typename T>
class CPUPRROIPoolOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in = ctx.Input<framework::Tensor>("X");
    auto* rois = ctx.Input<framework::LoDTensor>("ROIs");
    auto* out = ctx.Output<framework::Tensor>("Out");

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");

    auto in_dims = in->dims();
    int batch_size = in_dims[0];
    int input_channels = in_dims[1];
269
    auto output_channels = input_channels;
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
    int height = in_dims[2];
    int width = in_dims[3];
    int rois_num = rois->dims()[0];

    auto in_stride = framework::stride(in_dims);
    auto out_stride = framework::stride(out->dims());

    const T* input_data = in->data<T>();

    framework::Tensor rois_batch_id_list;
    rois_batch_id_list.Resize({rois_num});
    int* rois_batch_id_data =
        rois_batch_id_list.mutable_data<int>(ctx.GetPlace());

    auto rois_lod = rois->lod().back();
    int rois_batch_size = rois_lod.size() - 1;
    PADDLE_ENFORCE_EQ(
        rois_batch_size, batch_size,
        "the rois_batch_size and input(X) batch_size should be the same.");
    int rois_num_with_lod = rois_lod[rois_batch_size];
    PADDLE_ENFORCE_EQ(rois_num_with_lod, rois_num,
                      "the rois_num from input and lod must be the same");

    // calculate batch id index for each roi according to LoD
    for (int n = 0; n < rois_batch_size; ++n) {
      for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
        rois_batch_id_data[i] = n;
      }
    }

    T* output_data = out->mutable_data<T>(ctx.GetPlace());
    const T* input_rois = rois->data<T>();

    // calculate prroipooling, parallel processing can be implemented per ROI
    for (int n = 0; n < rois_num; ++n) {
      // set roi batch id
      int roi_batch_id = rois_batch_id_data[n];

      // [start, end) interval for spatial sampling
      const T* offset_input_rois = input_rois + n * 4;
      T roi_start_w = static_cast<T>(offset_input_rois[0]) * spatial_scale;
      T roi_start_h = static_cast<T>(offset_input_rois[1]) * spatial_scale;
      T roi_end_w = static_cast<T>(offset_input_rois[2]) * spatial_scale;
      T roi_end_h = static_cast<T>(offset_input_rois[3]) * spatial_scale;

      T roi_width = std::max(roi_end_w - roi_start_w, static_cast<T>(0.0));
      T roi_height = std::max(roi_end_h - roi_start_h, static_cast<T>(0.0));

      // Compute w and h at input feature map
      T bin_size_h = roi_height / static_cast<T>(pooled_height);
      T bin_size_w = roi_width / static_cast<T>(pooled_width);
      T win_size = std::max(static_cast<T>(0.0), bin_size_w * bin_size_h);

      // calculate each pixel of the output feature map.
      int out_roi_offset = n * out_stride[0];
      for (int c = 0; c < output_channels; ++c) {
        // per category
        int out_plane_offset = out_roi_offset + c * out_stride[1];
        for (int ph = 0; ph < pooled_height; ++ph) {
          int out_row_offset = out_plane_offset + ph * out_stride[2];
          for (int pw = 0; pw < pooled_width; ++pw) {
            // calculate w and h at input feature map
            T win_start_h = static_cast<T>(ph) * bin_size_h + roi_start_h;
            T win_start_w = static_cast<T>(pw) * bin_size_w + roi_start_w;
            T win_end_h = win_start_h + bin_size_h;
            T win_end_w = win_start_w + bin_size_w;
            //  Add roi offsets and clip to input boundaries
            int s_w = std::floor(win_start_w);
            int e_w = std::ceil(win_end_w);
            int s_h = std::floor(win_start_h);
            int e_h = std::ceil(win_end_h);

            int output_index = out_row_offset + pw;
343
            int input_channel = c;
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
            int input_plane_offset =
                roi_batch_id * in_stride[0] + input_channel * in_stride[1];
            const T* offset_input_data = input_data + input_plane_offset;
            T sum_out = 0.;

            if (win_size > static_cast<T>(0.0)) {
              for (int w_iter = s_w; w_iter < e_w; ++w_iter) {
                for (int h_iter = s_h; h_iter < e_h; ++h_iter) {
                  sum_out += PrRoIPoolingMatCalculation(
                      offset_input_data, h_iter, w_iter, h_iter + 1, w_iter + 1,
                      std::max(win_start_h, static_cast<T>(h_iter)),
                      std::max(win_start_w, static_cast<T>(w_iter)),
                      std::min(win_end_h,
                               static_cast<T>(h_iter) + static_cast<T>(1.0)),
                      std::min(win_end_w,
                               static_cast<T>(w_iter) + static_cast<T>(1.0)),
                      height, width);
                }
              }

              output_data[output_index] = sum_out / win_size;
            } else {
              output_data[output_index] = 0.;
            }
          }
        }
      }
    }
  }
};

template <typename DeviceContext, typename T>
class CPUPRROIPoolGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in = ctx.Input<framework::Tensor>("X");
380
    auto* out = ctx.Input<framework::Tensor>("Out");
381 382 383 384 385
    auto* rois = ctx.Input<framework::LoDTensor>("ROIs");
    auto* output_grad =
        ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* input_grad =
        ctx.Output<framework::Tensor>(framework::GradVarName("X"));
386 387
    auto* input_roi_grad =
        ctx.Output<framework::Tensor>(framework::GradVarName("ROIs"));
388 389 390 391 392

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");

393
    if (input_grad && input_roi_grad) {
394
      auto in_dims = in->dims();
395 396 397
      auto* in_data = in->data<T>();
      auto* out_data = out->data<T>();

398
      int input_channels = in_dims[1];
399
      auto output_channels = input_channels;
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
      int height = in_dims[2];
      int width = in_dims[3];
      int rois_num = rois->dims()[0];

      // set roi batch id
      framework::Tensor rois_batch_id_list;
      rois_batch_id_list.Resize({rois_num});
      int* rois_batch_id_data =
          rois_batch_id_list.mutable_data<int>(ctx.GetPlace());
      auto rois_lod = rois->lod().back();
      int rois_batch_size = rois_lod.size() - 1;
      // calculate batch id index for each roi according to LoD
      for (int n = 0; n < rois_batch_size; ++n) {
        for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
          rois_batch_id_data[i] = n;
        }
      }

      const T* input_rois = rois->data<T>();
      const T* output_grad_data = output_grad->data<T>();
      T* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
421
      T* input_roi_grad_data = input_roi_grad->mutable_data<T>(ctx.GetPlace());
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438

      // set gradient of X to be 0. before backpropagate.
      math::SetConstant<DeviceContext, T> set_zero;
      set_zero(ctx.template device_context<DeviceContext>(), input_grad,
               static_cast<T>(0));

      // backpropagate gradient per output pixel
      int output_grad_size = output_grad->numel();
      for (int i = 0; i < output_grad_size; ++i) {
        // The output is in order (n, c, ph, pw)
        int pw = i % pooled_width;
        int ph = (i / pooled_width) % pooled_height;
        int c = (i / pooled_width / pooled_height) % output_channels;
        int n = i / pooled_width / pooled_height / output_channels;

        // set roi_batch_id
        int roi_batch_id = rois_batch_id_data[n];
439
        int input_channel = c;
440 441 442 443
        int input_offset =
            (roi_batch_id * input_channels + input_channel) * height * width;
        T* offset_input_grad_data = input_grad_data + input_offset;
        const T* offset_output_grad_data = output_grad_data + i;
444
        const T* offset_out_data = out_data + i;
445 446 447 448 449 450 451

        // [start, end) interval for spatial sampling
        const T* offset_input_rois = input_rois + n * 4;
        T roi_start_w = static_cast<T>(offset_input_rois[0]) * spatial_scale;
        T roi_start_h = static_cast<T>(offset_input_rois[1]) * spatial_scale;
        T roi_end_w = static_cast<T>(offset_input_rois[2]) * spatial_scale;
        T roi_end_h = static_cast<T>(offset_input_rois[3]) * spatial_scale;
452
        T* offset_input_roi_grad_data = input_roi_grad_data + n * 4;
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489

        T roi_width = std::max(roi_end_w - roi_start_w, static_cast<T>(0.0));
        T roi_height = std::max(roi_end_h - roi_start_h, static_cast<T>(0.0));

        // Compute w and h at input feature map
        T bin_size_h = roi_height / static_cast<T>(pooled_height);
        T bin_size_w = roi_width / static_cast<T>(pooled_width);

        T win_start_w = roi_start_w + bin_size_w * pw;
        T win_start_h = roi_start_h + bin_size_h * ph;
        T win_end_w = win_start_w + bin_size_w;
        T win_end_h = win_start_h + bin_size_h;

        T win_size = std::max(static_cast<T>(0.0), bin_size_w * bin_size_h);

        T sum_out = win_size == static_cast<T>(0.)
                        ? static_cast<T>(0.)
                        : *offset_output_grad_data / win_size;

        int s_w = std::floor(win_start_w);
        int e_w = std::ceil(win_end_w);
        int s_h = std::floor(win_start_h);
        int e_h = std::ceil(win_end_h);

        for (int w_iter = s_w; w_iter < e_w; ++w_iter) {
          for (int h_iter = s_h; h_iter < e_h; ++h_iter) {
            PrRoIPoolingMatDistributeDiff(
                offset_input_grad_data, sum_out, h_iter, w_iter, h_iter + 1,
                w_iter + 1, std::max(win_start_h, static_cast<T>(h_iter)),
                std::max(win_start_w, static_cast<T>(w_iter)),
                std::min(win_end_h,
                         static_cast<T>(h_iter) + static_cast<T>(1.0)),
                std::min(win_end_w,
                         static_cast<T>(w_iter) + static_cast<T>(1.0)),
                height, width, PrRoIPoolingDistributeDiff<T>);
          }
        }
490 491 492 493 494 495 496 497 498 499

        const T* offset_in_data = in_data + input_offset;
        PrRoIPoolingCoorBackward(
            s_w, e_w, s_h, e_h, width, height, win_start_w, win_start_h,
            win_end_w, win_end_h, pw, ph, pooled_width, pooled_height, win_size,
            spatial_scale, offset_in_data, offset_out_data,
            offset_input_grad_data, offset_input_roi_grad_data,
            CPUAccumulateRois<T>,
            [](const T x, const T y) { return std::max(x, y); },
            [](const T x, const T y) { return std::min(x, y); });
500 501 502 503 504 505 506
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle