tensor.cc 14.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/api/include/tensor.h"
16 17 18 19 20 21

#include <memory>
#include <utility>
#include <vector>

#include "glog/logging.h"
22

23
#include "paddle/phi/api/lib/utils/allocator.h"
24 25
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/core/ddim.h"
26
#include "paddle/phi/core/dense_tensor.h"
27
#include "paddle/phi/core/enforce.h"
28
#include "paddle/phi/core/selected_rows.h"
29 30
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
31
#include "paddle/phi/core/string_tensor.h"
32 33 34
#include "paddle/phi/core/tensor_base.h"
#include "paddle/phi/core/tensor_meta.h"
#include "paddle/phi/core/tensor_utils.h"
35

36 37 38 39 40 41 42 43 44
#include "paddle/fluid/platform/stream/cuda_stream.h"

namespace paddle {
namespace experimental {

/////// Tensor Methods ////////

/* Part 1: Construction and destruction methods */

45
Tensor::Tensor(std::shared_ptr<phi::TensorBase> tensor_impl)
46
    : impl_(std::move(tensor_impl)) {
47 48 49
  PADDLE_ENFORCE_NOT_NULL(
      impl_,
      phi::errors::InvalidArgument("TensorImpl with nullptr is not supported"));
50 51
}

52 53 54 55 56 57 58 59 60
Tensor::Tensor(const Place &place) {
  LOG_FIRST_N(WARNING, 1)
      << "The Tensor(place) constructor is deprecated since version "
         "2.3, and will be removed in version 2.4! Please use "
         "`paddle::empty/full` method to create a new "
         "Tensor instead. "
         "Reason: A legal tensor cannot be constructed only based on "
         "the `place`, and datatype, shape, layout, etc. is also "
         "required.";
61
  DefaultAllocator alloc(place);
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
  impl_ = std::move(std::make_shared<phi::DenseTensor>(
      &alloc,
      std::move(phi::DenseTensorMeta(
          phi::DataType::FLOAT32, phi::make_ddim({}), phi::DataLayout::NCHW))));
}

Tensor::Tensor(const Place &place, const std::vector<int64_t> &shape) {
  LOG_FIRST_N(WARNING, 1)
      << "The Tensor(place, shape) constructor is deprecated since "
         "version 2.3, and will be removed in version 2.4! Please use "
         "`paddle::empty/full` method to create a new "
         "Tensor instead. "
         "Reason: A legal tensor cannot be constructed only based on "
         "the `place` and `shape`, and datatype, layout, etc. is also "
         "required.";
77
  DefaultAllocator alloc(place);
78 79 80 81 82 83
  impl_ = std::move(std::make_shared<phi::DenseTensor>(
      &alloc,
      std::move(phi::DenseTensorMeta(phi::DataType::FLOAT32,
                                     phi::make_ddim({shape}),
                                     phi::DataLayout::NCHW))));
}
84

85
Tensor::Tensor(std::shared_ptr<phi::TensorBase> tensor_impl,
86 87
               const std::string &name)
    : impl_(std::move(tensor_impl)), name_(std::move(name)) {}
88

89 90 91 92 93 94
/* Part 2: Dimension, DataType and DataLayout methods */

int64_t Tensor::numel() const { return impl_->numel(); }

int64_t Tensor::size() const { return impl_->numel(); }

95
const phi::DDim &Tensor::dims() const { return impl_->dims(); }
96 97

std::vector<int64_t> Tensor::shape() const {
98 99
  auto dims = impl_->dims();
  return phi::vectorize<int64_t>(dims);
100 101 102
}

void Tensor::reshape(const std::vector<int64_t> &shape) {
103 104 105 106 107 108 109 110 111
  LOG_FIRST_N(WARNING, 1)
      << "The function of resetting the shape of the uninitialized "
         "Tensor of the `reshape` method is deprecated since version "
         "2.3, and will be removed in version 2.4, please use "
         "`paddle::empty/full` method to create a new Tensor "
         "instead. "
         "reason: `reshape` means changing the tensor shape without "
         "touching underlying data, this requires the total size of "
         "the tensor to remain constant.";
C
Chen Weihang 已提交
112
  if (is_dense_tensor()) {
113
    static_cast<phi::DenseTensor *>(impl_.get())->Resize(phi::make_ddim(shape));
114
  } else {
115
    PADDLE_THROW(phi::errors::Unimplemented(
116 117
        "Only support reshape operation on DenseTensor now."));
  }
118 119
}

120
DataType Tensor::dtype() const { return impl_->dtype(); }
121

122
DataType Tensor::type() const { return impl_->dtype(); }
123 124 125

DataLayout Tensor::layout() const { return impl_->layout(); }

C
Chen Weihang 已提交
126
bool Tensor::is_dense_tensor() const {
127
  return phi::DenseTensor::classof(impl_.get());
C
Chen Weihang 已提交
128
}
129
bool Tensor::is_selected_rows() const {
130
  return phi::SelectedRows::classof(impl_.get());
131
}
132 133 134 135 136 137
bool Tensor::is_sparse_coo_tensor() const {
  return phi::SparseCooTensor::classof(impl_.get());
}
bool Tensor::is_sparse_csr_tensor() const {
  return phi::SparseCsrTensor::classof(impl_.get());
}
138 139 140
bool Tensor::is_string_tensor() const {
  return phi::StringTensor::classof(impl_.get());
}
141 142
/* Part 3: Device and Backend methods */

143
const Place &Tensor::place() const {
144 145 146 147
  PADDLE_ENFORCE_NOT_NULL(
      impl_,
      phi::errors::PermissionDenied(
          "Null pointer error, the impl_ of Tensor should not be "
148
          "Null when calling Tensor::place()."));
149
  return impl_->place();
150
}
151

152
bool Tensor::is_cpu() const { return paddle::platform::is_cpu_place(place()); }
153

154
bool Tensor::is_gpu() const { return paddle::platform::is_gpu_place(place()); }
155

156
bool Tensor::is_gpu_pinned() const {
157
  return paddle::platform::is_cuda_pinned_place(place());
158 159
}

160 161 162 163
/* Part 4: Data Access methods */

template <typename T>
T *Tensor::mutable_data() {
164 165 166 167 168 169 170 171 172 173
  LOG_FIRST_N(WARNING, 1)
      << "Allocating memory through `mutable_data` method is "
         "deprecated since version 2.3, and `mutable_data` method "
         "will be removed in version 2.4! Please use "
         "`paddle::empty/full` method to create a new "
         "Tensor with allocated memory, and use data<T>() method "
         "to get the memory pointer of tensor instead. "
         "Reason: When calling `mutable_data` to allocate memory, "
         "the place, datatype, and data layout of tensor may be in "
         "an illegal state.";
C
Chen Weihang 已提交
174
  if (is_dense_tensor()) {
175 176
    return static_cast<phi::DenseTensor *>(impl_.get())
        ->mutable_data<T>(place());
177 178 179 180
  }
  return nullptr;
}

181 182 183 184 185 186 187 188
template PADDLE_API float *Tensor::mutable_data<float>();
template PADDLE_API double *Tensor::mutable_data<double>();
template PADDLE_API int64_t *Tensor::mutable_data<int64_t>();
template PADDLE_API int32_t *Tensor::mutable_data<int32_t>();
template PADDLE_API uint8_t *Tensor::mutable_data<uint8_t>();
template PADDLE_API int8_t *Tensor::mutable_data<int8_t>();
template PADDLE_API int16_t *Tensor::mutable_data<int16_t>();
template PADDLE_API bool *Tensor::mutable_data<bool>();
189 190 191 192 193 194
template PADDLE_API phi::dtype::complex<float>
    *Tensor::mutable_data<phi::dtype::complex<float>>();
template PADDLE_API phi::dtype::complex<double>
    *Tensor::mutable_data<phi::dtype::complex<double>>();
template PADDLE_API phi::dtype::float16 *
Tensor::mutable_data<phi::dtype::float16>();
195 196

template <typename T>
197 198 199 200 201 202 203 204 205 206 207
T *Tensor::mutable_data(const Place &place) {
  LOG_FIRST_N(WARNING, 1)
      << "Allocating memory through `mutable_data` method is "
         "deprecated since version 2.3, and `mutable_data` method "
         "will be removed in version 2.4! Please use "
         "`paddle::empty/full` method to create a new "
         "Tensor with allocated memory, and use data<T>() method "
         "to get the memory pointer of tensor instead. "
         "Reason: When calling `mutable_data` to allocate memory, "
         "the datatype, and data layout of tensor may be in "
         "an illegal state.";
208
  if (is_dense_tensor()) {
209
    return static_cast<phi::DenseTensor *>(impl_.get())->mutable_data<T>(place);
210 211
  }
  return nullptr;
212 213
}

214 215 216 217 218 219 220 221
template PADDLE_API float *Tensor::mutable_data<float>(const Place &place);
template PADDLE_API double *Tensor::mutable_data<double>(const Place &place);
template PADDLE_API int64_t *Tensor::mutable_data<int64_t>(const Place &place);
template PADDLE_API int32_t *Tensor::mutable_data<int32_t>(const Place &place);
template PADDLE_API uint8_t *Tensor::mutable_data<uint8_t>(const Place &place);
template PADDLE_API int8_t *Tensor::mutable_data<int8_t>(const Place &place);
template PADDLE_API int16_t *Tensor::mutable_data<int16_t>(const Place &place);
template PADDLE_API bool *Tensor::mutable_data<bool>(const Place &place);
222
template PADDLE_API phi::dtype::complex<float>
223
    *Tensor::mutable_data<phi::dtype::complex<float>>(const Place &place);
224
template PADDLE_API phi::dtype::complex<double>
225
    *Tensor::mutable_data<phi::dtype::complex<double>>(const Place &place);
226
template PADDLE_API phi::dtype::float16 *
227
Tensor::mutable_data<phi::dtype::float16>(const Place &place);
228 229 230

template <typename T>
const T *Tensor::data() const {
C
Chen Weihang 已提交
231
  if (is_dense_tensor()) {
232 233 234
    return static_cast<phi::DenseTensor *>(impl_.get())->data<T>();
  } else if (is_selected_rows()) {
    return static_cast<phi::SelectedRows *>(impl_.get())->value().data<T>();
235 236 237 238
  }
  return nullptr;
}

239 240 241 242 243 244 245 246
template PADDLE_API const float *Tensor::data<float>() const;
template PADDLE_API const double *Tensor::data<double>() const;
template PADDLE_API const int64_t *Tensor::data<int64_t>() const;
template PADDLE_API const int32_t *Tensor::data<int32_t>() const;
template PADDLE_API const uint8_t *Tensor::data<uint8_t>() const;
template PADDLE_API const int8_t *Tensor::data<int8_t>() const;
template PADDLE_API const int16_t *Tensor::data<int16_t>() const;
template PADDLE_API const bool *Tensor::data<bool>() const;
247 248 249 250 251 252 253 254
template PADDLE_API const phi::dtype::complex<float>
    *Tensor::data<phi::dtype::complex<float>>() const;
template PADDLE_API const phi::dtype::complex<double>
    *Tensor::data<phi::dtype::complex<double>>() const;
template PADDLE_API const phi::dtype::float16 *
Tensor::data<phi::dtype::float16>() const;
template PADDLE_API const phi::dtype::bfloat16 *
Tensor::data<phi::dtype::bfloat16>() const;
255 256 257

template <typename T>
T *Tensor::data() {
258
  if (is_dense_tensor()) {
259 260 261
    return static_cast<phi::DenseTensor *>(impl_.get())->data<T>();
  } else if (is_selected_rows()) {
    return static_cast<phi::SelectedRows *>(impl_.get())
262 263 264
        ->mutable_value()
        ->data<T>();
  }
265 266 267
  return nullptr;
}

268 269 270 271 272 273 274 275
template PADDLE_API float *Tensor::data<float>();
template PADDLE_API double *Tensor::data<double>();
template PADDLE_API int64_t *Tensor::data<int64_t>();
template PADDLE_API int32_t *Tensor::data<int32_t>();
template PADDLE_API uint8_t *Tensor::data<uint8_t>();
template PADDLE_API int8_t *Tensor::data<int8_t>();
template PADDLE_API int16_t *Tensor::data<int16_t>();
template PADDLE_API bool *Tensor::data<bool>();
276 277 278 279 280
template PADDLE_API phi::dtype::complex<float>
    *Tensor::data<phi::dtype::complex<float>>();
template PADDLE_API phi::dtype::complex<double>
    *Tensor::data<phi::dtype::complex<double>>();
template PADDLE_API phi::dtype::float16 *Tensor::data<phi::dtype::float16>();
281

282
// TODO(chenweihang): replace slice impl by API
283
Tensor Tensor::slice(int64_t begin_idx, int64_t end_idx) const {
C
Chen Weihang 已提交
284
  if (is_dense_tensor()) {
285 286
    return Tensor(std::make_shared<phi::DenseTensor>(
        std::move(phi::DenseTensorUtils::Slice(
287
            *(static_cast<phi::DenseTensor *>(impl_.get())),
288 289 290
            begin_idx,
            end_idx))));
  } else {
291
    PADDLE_THROW(phi::errors::Unimplemented(
292
        "Only support slice operation on DenseTensor now."));
293
  }
294 295
}

296
const std::shared_ptr<phi::TensorBase> &Tensor::impl() const { return impl_; }
297

298
void Tensor::set_impl(const std::shared_ptr<phi::TensorBase> &impl) {
299 300 301
  impl_ = impl;
}

302 303 304 305
void Tensor::set_impl(std::shared_ptr<phi::TensorBase> &&impl) {
  impl_ = std::move(impl);
}

306 307 308 309 310 311
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
gpuStream_t Tensor::stream() const {
  return platform::stream::get_current_stream(-1)->raw_stream();
}
#endif

312
/* Part 5: Status utils methods */
313 314 315

bool Tensor::defined() const { return impl_ != nullptr; }

316
bool Tensor::initialized() const { return defined() && impl_->initialized(); }
317 318

bool Tensor::is_initialized() const {
319 320 321 322
  LOG_FIRST_N(WARNING, 1)
      << "The `is_initialized` method is deprecated since version "
         "2.3, and will be removed in version 2.4! "
         "Please use `initialized` method instead.";
323
  return defined() && impl_->initialized();
324 325
}

326 327 328 329 330
void Tensor::reset() {
  impl_.reset();
  autograd_meta_.reset();
  name_ = "";
}
331

332
/* Part 6: Operator overloading */
333 334 335 336

Tensor &Tensor::operator=(const Tensor &x) & {
  impl_ = x.impl_;
  autograd_meta_ = x.autograd_meta_;
337
  name_ = x.name_;
338 339 340 341 342 343
  return *this;
}

Tensor &Tensor::operator=(Tensor &&x) & {
  impl_ = std::move(x.impl_);
  autograd_meta_ = std::move(x.autograd_meta_);
344
  name_ = std::move(x.name_);
345 346 347 348 349 350 351
  return *this;
}

AbstractAutogradMeta *Tensor::get_autograd_meta() const {
  return autograd_meta_.get();
}

352 353 354 355 356
const std::shared_ptr<AbstractAutogradMeta> &Tensor::mutable_autograd_meta()
    const {
  return autograd_meta_;
}

357 358 359 360 361
void Tensor::set_autograd_meta(
    std::shared_ptr<AbstractAutogradMeta> autograd_meta) {
  autograd_meta_ = std::move(autograd_meta);
}

362 363 364
void Tensor::bump_inplace_version() {
  if (is_dense_tensor()) {
    auto &inplace_version_counter =
365
        static_cast<phi::DenseTensor *>(impl_.get())->InplaceVersionCounter();
366 367 368 369 370 371 372 373 374 375
    inplace_version_counter.Bump();
  } else {
    PADDLE_THROW(phi::errors::Unimplemented(
        "bump_inplace_version is only supported on DenseTensor now."));
  }
}

uint32_t Tensor::current_inplace_version() {
  if (is_dense_tensor()) {
    auto &inplace_version_counter =
376
        static_cast<phi::DenseTensor *>(impl_.get())->InplaceVersionCounter();
377 378 379 380 381 382 383 384
    return inplace_version_counter.CurrentVersion();
  } else {
    PADDLE_THROW(phi::errors::Unimplemented(
        "current_inplace_version is only supported on DenseTensor now."));
  }
  return 0;
}

385 386 387 388
void Tensor::reset_inplace_version(bool set_to_zero) {
  if (set_to_zero) {
    if (is_dense_tensor()) {
      auto &inplace_version_counter =
389
          static_cast<phi::DenseTensor *>(impl_.get())->InplaceVersionCounter();
390 391 392 393 394
      inplace_version_counter.SetInplaceVersionToZero();
    }
  }
}

395 396
}  // namespace experimental
}  // namespace paddle