while_op.cc 13.5 KB
Newer Older
Y
Yang Yang(Tony) 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yang Yang(Tony) 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yang Yang(Tony) 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yang Yang(Tony) 已提交
14 15 16

#include <vector>
#include "paddle/framework/executor.h"
Y
Yang Yang(Tony) 已提交
17
#include "paddle/framework/lod_tensor_array.h"
Y
Yang Yang(Tony) 已提交
18 19
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
Y
Yang Yang(Tony) 已提交
20
#include "paddle/operators/detail/safe_ref.h"
Y
Yang Yang(Tony) 已提交
21 22 23 24 25 26 27

namespace paddle {
namespace operators {

using StepScopeVar = std::vector<framework::Scope *>;
using LoDTensor = framework::LoDTensor;

Y
Yang Yu 已提交
28 29 30 31 32 33
static constexpr char kStepBlock[] = "sub_block";
static constexpr char kCondition[] = "Condition";
static constexpr char kStepScopes[] = "StepScopes";
static constexpr char kX[] = "X";
static constexpr char kXGRAD[] = "X@GRAD";
static constexpr char kOutputs[] = "Out";
Y
Yang Yang(Tony) 已提交
34 35 36 37 38 39 40 41 42

class WhileOp : public framework::OperatorBase {
 public:
  WhileOp(const std::string &type, const framework::VariableNameMap &inputs,
          const framework::VariableNameMap &outputs,
          const framework::AttributeMap &attrs)
      : framework::OperatorBase(type, inputs, outputs, attrs) {}

  void Run(const framework::Scope &scope,
D
dzhwinter 已提交
43
           const platform::Place &dev_place) const override {
Y
Yang Yang(Tony) 已提交
44 45 46 47
    PADDLE_ENFORCE_NOT_NULL(scope.FindVar(Input(kCondition)));
    auto &cond = scope.FindVar(Input(kCondition))->Get<LoDTensor>();
    PADDLE_ENFORCE_EQ(cond.dims(), paddle::framework::make_ddim({1}));

D
dzhwinter 已提交
48
    framework::Executor executor(dev_place);
Y
Yu Yang 已提交
49
    auto *block = Attr<framework::BlockDesc *>(kStepBlock);
D
dzhwinter 已提交
50

Y
Yang Yang(Tony) 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
    auto *program = block->Program();

    auto step_scopes =
        scope.FindVar(Output(kStepScopes))->GetMutable<StepScopeVar>();

    while (cond.data<bool>()[0]) {
      auto &current_scope = scope.NewScope();
      step_scopes->push_back(&current_scope);

      executor.Run(*program, &current_scope, block->ID(),
                   false /*create_local_scope*/);
    }
  }
};

class WhileOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
68
  WhileOpMaker(OpProto *proto, OpAttrChecker *op_checker)
Y
Yang Yang(Tony) 已提交
69
      : OpProtoAndCheckerMaker(proto, op_checker) {
Y
Yang Yu 已提交
70
    AddInput(kX,
Y
Yang Yang(Tony) 已提交
71 72 73 74 75 76 77
             "A set of variables, which are required by operators inside the "
             "block of While Op.")
        .AsDuplicable();
    AddInput(
        kCondition,
        "(Bool) An scalar. When it's False, the While Op will be terminated.")
        .AsDuplicable();
Y
Yang Yang(Tony) 已提交
78
    AddOutput(kOutputs,
Y
Yang Yang(Tony) 已提交
79
              "A set of variables, which will be assigned with values "
Y
Yang Yang(Tony) 已提交
80
              "generated by the operators inside the block of While Op.")
Y
Yang Yang(Tony) 已提交
81 82 83 84 85
        .AsDuplicable();
    AddOutput(kStepScopes,
              "(StepScopeVar) A vector of local scope, which size equals the "
              "step number of While Op. The i'th scope storages temporary "
              "variables generated in the i'th step.");
Y
Yu Yang 已提交
86 87
    AddAttr<framework::BlockDesc *>(kStepBlock,
                                    "The step block inside WhileOp");
Y
Yang Yang(Tony) 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100
    AddComment(R"DOC(
)DOC");
  }
};

class WhileGradOp : public framework::OperatorBase {
 public:
  WhileGradOp(const std::string &type, const framework::VariableNameMap &inputs,
              const framework::VariableNameMap &outputs,
              const framework::AttributeMap &attrs)
      : framework::OperatorBase(type, inputs, outputs, attrs) {}

  void Run(const framework::Scope &scope,
D
dzhwinter 已提交
101 102
           const platform::Place &dev_place) const override {
    framework::Executor executor(dev_place);
Y
Yu Yang 已提交
103
    auto *block = Attr<framework::BlockDesc *>(kStepBlock);
Y
Yang Yang(Tony) 已提交
104 105 106 107 108
    auto *program = block->Program();

    auto *step_scopes =
        scope.FindVar(Input(kStepScopes))->GetMutable<StepScopeVar>();

Y
Yang Yang(Tony) 已提交
109 110 111 112 113 114
    auto outside_og_names = Inputs(framework::GradVarName(kOutputs));
    auto inside_og_names =
        Attr<std::vector<std::string>>("original_output_grad");

    PADDLE_ENFORCE_EQ(outside_og_names.size(), inside_og_names.size());

Y
Yang Yang(Tony) 已提交
115 116
    for (auto cur_scope_iter = step_scopes->rbegin();
         cur_scope_iter != step_scopes->rend(); ++cur_scope_iter) {
Y
Yang Yang(Tony) 已提交
117 118 119 120 121 122 123
      VLOG(3) << "Start backward at time_step "
              << cur_scope_iter - step_scopes->rbegin();
      framework::Scope &cur_scope = **cur_scope_iter;
      // Link OG from outside to inside
      for (size_t i = 0; i < outside_og_names.size(); ++i) {
        auto outside_og_name = outside_og_names[i];
        auto inside_og_name = inside_og_names[i];
124 125
        VLOG(8) << "Linking outside " << outside_og_name << " --> inside "
                << inside_og_name;
126 127 128 129 130 131
        auto &og_outside =
            detail::Ref(scope.FindVar(outside_og_name),
                        "Cannot find Outside Gradient %s", outside_og_name);
        auto &og_inside =
            detail::Ref(cur_scope.Var(inside_og_name),
                        "Cannot find inside gradient %s", inside_og_name);
Y
Yang Yang(Tony) 已提交
132 133 134 135 136 137 138 139 140 141 142 143
        if (og_outside.Type().hash_code() ==
            typeid(framework::LoDTensor).hash_code()) {
          auto &outside_tensor = og_outside.Get<framework::LoDTensor>();
          auto &inside_tensor =
              detail::Ref(og_inside.GetMutable<framework::LoDTensor>());
          inside_tensor.set_lod(outside_tensor.lod());
          inside_tensor.ShareDataWith(outside_tensor);
        } else if (og_outside.Type().hash_code() ==
                   typeid(framework::LoDTensorArray).hash_code()) {
          auto &outside_array = og_outside.Get<framework::LoDTensorArray>();
          auto &inside_array =
              detail::Ref(og_inside.GetMutable<framework::LoDTensorArray>());
144
          VLOG(8) << outside_og_name << " size = " << outside_array.size();
Y
Yang Yang(Tony) 已提交
145 146 147
          inside_array.resize(outside_array.size());

          for (size_t j = 0; j < inside_array.size(); ++j) {
148
            VLOG(8) << j << " " << outside_array[j].numel();
Y
Yang Yang(Tony) 已提交
149 150 151 152 153 154 155 156 157 158
            if (outside_array[j].numel() != 0) {
              inside_array[j].set_lod(outside_array[j].lod());
              inside_array[j].ShareDataWith(outside_array[j]);
            } else {
              PADDLE_ENFORCE_EQ(inside_array[j].numel(), 0);
            }
          }
        }
      }

Y
Yang Yang(Tony) 已提交
159 160
      executor.Run(*program, *cur_scope_iter, block->ID(), false);

Y
Yang Yu 已提交
161 162
      auto &pg_names = Outputs(kXGRAD);
      auto &p_names = Inputs(kX);
Y
Yang Yang(Tony) 已提交
163
      PADDLE_ENFORCE_EQ(pg_names.size(), p_names.size());
Y
Yang Yang(Tony) 已提交
164 165
      for (size_t param_id = 0; param_id < pg_names.size(); ++param_id) {
        if (pg_names[param_id] == framework::kEmptyVarName) {
166
          continue;  // parameter doesn't have gradient
Y
Yang Yang(Tony) 已提交
167 168
        }
        auto inside_grad_name = framework::GradVarName(p_names[param_id]);
Y
Yang Yang(Tony) 已提交
169

Y
Yang Yang(Tony) 已提交
170
        //  // TODO(tonyyang-svail): Not sure we need the following
Y
Yang Yang(Tony) 已提交
171 172 173 174 175 176 177 178 179 180 181
        //  // If does not compute gradient of that variable inside rnn,
        //  just
        //  // continue
        //  if (local_var_names.find(inside_grad_name) ==
        //  local_var_names.end()) {
        //    continue;
        //  }

        // zero gradient variable in step 0
        if (cur_scope_iter == step_scopes->rbegin()) {
          auto *var = (*cur_scope_iter)->FindVar(inside_grad_name);
Y
Yang Yang(Tony) 已提交
182
          PADDLE_ENFORCE_NOT_NULL(var, "Can not find var %s", inside_grad_name);
Y
Yang Yang(Tony) 已提交
183 184 185
          if (var->IsType<LoDTensor>()) {
            auto &inside_tensor = var->Get<framework::LoDTensor>();
            framework::AttributeMap attrs;
F
fengjiayi 已提交
186
            attrs["dtype"] = framework::ToDataType(inside_tensor.type());
Y
Yang Yang(Tony) 已提交
187 188 189
            attrs["shape"] = framework::vectorize2int(inside_tensor.dims());
            attrs["value"] = 0.0f;

190
            auto var_name = pg_names[param_id];
Y
Yang Yang(Tony) 已提交
191
            auto zero_op = framework::OpRegistry::CreateOp(
Y
Yiqun Liu 已提交
192
                "fill_constant", framework::VariableNameMap{},
193
                {{"Out", {var_name}}}, attrs);
D
dzhwinter 已提交
194
            zero_op->Run(scope, dev_place);
195 196 197
            scope.FindVar(var_name)
                ->GetMutable<framework::LoDTensor>()
                ->set_lod(inside_tensor.lod());
Y
Yang Yang(Tony) 已提交
198 199 200
          }
        }

Y
Yang Yang(Tony) 已提交
201
        auto new_inside_name = cur_scope.Rename(inside_grad_name);
Y
Yang Yang(Tony) 已提交
202
        auto sum_op = framework::OpRegistry::CreateOp(
Y
Yang Yang(Tony) 已提交
203
            "sum", {{"X", {pg_names[param_id], new_inside_name}}},
Y
Yiqun Liu 已提交
204
            {{"Out", {pg_names[param_id]}}}, framework::AttributeMap{});
D
dzhwinter 已提交
205
        sum_op->Run(cur_scope, dev_place);
Y
Yang Yang(Tony) 已提交
206
        cur_scope.Rename(new_inside_name, inside_grad_name);
Y
Yang Yang(Tony) 已提交
207 208 209 210 211 212 213 214 215 216
      }
    }
  }
};

class WhileGradOpDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
Y
Yu Yang 已提交
217
  std::unique_ptr<framework::OpDesc> Apply() const override {
F
Update  
fengjiayi 已提交
218 219 220 221 222 223 224 225
    auto *while_grad = new framework::OpDesc();
    while_grad->SetType("while_grad");
    while_grad->SetInput(kX, Input(kX));
    while_grad->SetInput(kOutputs, Output(kOutputs));
    while_grad->SetInput(kStepScopes, Output(kStepScopes));

    auto *grad_block = this->grad_block_[0];
    auto *fwd_block = grad_block->ParentBlock();
226 227 228

    // Not all of IGs will be generated by inner gradient operators of while op.
    // Ignore IGs that is not generated by the inside block.
F
Update  
fengjiayi 已提交
229 230 231 232
    std::unordered_set<std::string> inner_op_outputs;
    for (const auto *op : grad_block->AllOps()) {
      for (auto &oname : op->OutputArgumentNames()) {
        inner_op_outputs.insert(oname);
233 234
      }
    }
F
Update  
fengjiayi 已提交
235
    auto igs = InputGrad(kX, /*do not drop empty gradient*/ false);
236
    for (auto &each_ig : igs) {
F
Update  
fengjiayi 已提交
237
      if (inner_op_outputs.find(each_ig) == inner_op_outputs.end()) {
238
        VLOG(8) << "Ignore " << each_ig;
239 240 241
        each_ig = framework::kEmptyVarName;
      }
    }
F
Update  
fengjiayi 已提交
242
    while_grad->SetOutput(framework::GradVarName(kX), igs);
Y
Yang Yang(Tony) 已提交
243 244 245 246

    // OG should be re-calculated by step blocks, since many outputs of while op
    // do not need to calculate gradients.
    std::unordered_set<std::string> block_ins;
F
fengjiayi 已提交
247 248 249 250 251 252 253
    block_ins.reserve(Input(kX).size() + Output(kOutputs).size());
    for (auto &p : Input(kX)) {
      block_ins.insert(p);
    }
    for (auto &o : Output(kOutputs)) {
      block_ins.insert(o);
    }
Y
Yang Yang(Tony) 已提交
254
    std::unordered_set<std::string> extra_inputs;
F
Update  
fengjiayi 已提交
255 256 257 258 259 260
    for (const auto *op : grad_block->AllOps()) {
      for (auto &input_name : op->InputArgumentNames()) {
        // If the input of Op has been recorded or is generated by the forward
        // block, do not make it as input again.
        if (block_ins.find(input_name) != block_ins.end() ||
            fwd_block->FindVar(input_name) != nullptr) {
Y
Yang Yang(Tony) 已提交
261 262 263 264
          continue;
        }
        extra_inputs.insert(input_name);
      }
F
Update  
fengjiayi 已提交
265
      for (auto &output_name : op->OutputArgumentNames()) {
Y
Yang Yang(Tony) 已提交
266
        block_ins.insert(output_name);
Y
Yang Yang(Tony) 已提交
267 268
      }
    }
Y
Yang Yang(Tony) 已提交
269 270 271 272 273

    std::vector<std::string> extra_inputs_list;
    extra_inputs_list.resize(extra_inputs.size());
    std::copy(extra_inputs.begin(), extra_inputs.end(),
              extra_inputs_list.begin());
F
Update  
fengjiayi 已提交
274 275 276 277
    while_grad->SetInput(framework::GradVarName(kOutputs), extra_inputs_list);

    while_grad->SetAttrMap(this->Attrs());
    while_grad->SetBlockAttr(kStepBlock, *grad_block);
Y
Yang Yang(Tony) 已提交
278 279
    // record the original output gradient names, since the gradient name of
    // while operator could be renamed.
F
Update  
fengjiayi 已提交
280
    while_grad->SetAttr("original_output_grad", extra_inputs_list);
Y
Yang Yang(Tony) 已提交
281

F
Update  
fengjiayi 已提交
282
    return std::unique_ptr<framework::OpDesc>(while_grad);
Y
Yang Yang(Tony) 已提交
283 284 285
  }
};

Y
Yang Yang(Tony) 已提交
286 287
class WhileGradOpVarTypeInference : public framework::VarTypeInference {
 public:
Y
Yu Yang 已提交
288 289
  void operator()(const framework::OpDesc &op_desc,
                  framework::BlockDesc *block) const override {
Y
Yang Yu 已提交
290 291
    auto p_names = op_desc.Input(kX);
    auto pg_names = op_desc.Output(framework::GradVarName(kX));
Y
Yang Yang(Tony) 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308

    for (size_t i = 0; i < p_names.size(); ++i) {
      auto &p_var = detail::Ref(block->FindVarRecursive(p_names[i]));
      auto *g_var = block->FindVarRecursive(pg_names[i]);
      if (g_var != nullptr) {  // Gradient could be @EMPTY@
        VLOG(5) << "Setting " << pg_names[i] << " following " << p_names[i]
                << " type: " << p_var.GetType();
        g_var->SetType(p_var.GetType());
        g_var->SetDataType(p_var.GetDataType());
      }
    }
  }
};

class WhileGradOpShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *ctx) const override {
Y
Yang Yu 已提交
309 310
    ctx->HasInputs(kX);
    ctx->HasOutputs(framework::GradVarName(kX));
Y
Yang Yang(Tony) 已提交
311 312 313
    ctx->HasInputs(kOutputs);
    ctx->HasInputs(framework::GradVarName(kOutputs));

Y
Yang Yu 已提交
314 315 316
    auto p_names = ctx->Inputs(kX);
    auto pg_names = ctx->Outputs(kXGRAD);
    auto var_types = ctx->GetInputsVarType(kX);
Y
Yang Yang(Tony) 已提交
317 318 319 320 321 322
    std::vector<std::string> names_to_set;
    std::vector<framework::DDim> dims_to_set;
    for (size_t i = 0; i < p_names.size(); ++i) {
      if (pg_names[i] == framework::kEmptyVarName) {
        continue;
      }
Y
Yang Yu 已提交
323
      auto dims = ctx->GetInputsElementDim(kX, i);
324
      if (var_types[i] == framework::proto::VarDesc::LOD_TENSOR) {
Y
Yang Yang(Tony) 已提交
325
        names_to_set.push_back(pg_names[i]);
F
fengjiayi 已提交
326
        dims_to_set.push_back(dims);
327
      } else if (var_types[i] == framework::proto::VarDesc::LOD_TENSOR_ARRAY) {
Y
Yang Yang(Tony) 已提交
328 329
        // not sure how to set the dim of LOD_TENSOR_ARRAY
        names_to_set.push_back(pg_names[i]);
F
fengjiayi 已提交
330
        dims_to_set.push_back(dims);
Y
Yang Yang(Tony) 已提交
331 332 333 334 335 336
      }
    }
    ctx->SetDims(names_to_set, dims_to_set);
  }
};

Y
Yang Yang(Tony) 已提交
337 338 339 340 341 342
}  // namespace operators
}  // namespace paddle

REGISTER_OPERATOR(while, paddle::operators::WhileOp,
                  paddle::operators::WhileOpMaker,
                  paddle::operators::WhileGradOpDescMaker);
Y
Yang Yang(Tony) 已提交
343 344 345
REGISTER_OPERATOR(while_grad, paddle::operators::WhileGradOp,
                  paddle::operators::WhileGradOpShapeInference,
                  paddle::operators::WhileGradOpVarTypeInference);