test_mv_op.py 3.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
#Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
from op_test import OpTest


class TestMVOp(OpTest):
    def setUp(self):
        self.op_type = "mv"
        self.init_config()
        self.inputs = {'X': self.x, 'Vec': self.vec}
        self.outputs = {'Out': np.dot(self.x, self.vec)}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X', 'Vec'], 'Out')

    def init_config(self):
        self.x = np.random.random((5, 100)).astype("float64")
        self.vec = np.random.random((100)).astype("float64")


class TestMVAPI(unittest.TestCase):
    def test_dygraph_api_out(self):
        paddle.disable_static()

        self.x_data = np.random.random((5, 100)).astype("float64")
        self.x = paddle.to_tensor(self.x_data)
        self.vec_data = np.random.random((100)).astype("float64")
        self.vec = paddle.to_tensor(self.vec_data)
        z = paddle.mv(self.x, self.vec)
        np_z = z.numpy()
        z_expected = np.array(np.dot(self.x_data, self.vec_data))
        self.assertTrue(np.allclose(np_z, z_expected))

        paddle.enable_static()

    def test_static_graph(self):
        paddle.enable_static()

        self.input_x = np.random.rand(5, 100).astype("float64")
        self.input_vec = np.random.rand(100).astype("float64")

        data_x = paddle.static.data("x", shape=[5, 100], dtype="float64")
        data_vec = paddle.static.data("vec", shape=[100], dtype="float64")
        result_vec = paddle.mv(data_x, data_vec)
        self.place = paddle.CPUPlace()
        exe = paddle.static.Executor(self.place)
        res, = exe.run(feed={"x": self.input_x,
                             "vec": self.input_vec},
                       fetch_list=[result_vec])
        z_expected = np.array(np.dot(self.input_x, self.input_vec))
        self.assertTrue(np.allclose(res, z_expected))


class TestMVError(unittest.TestCase):
    def test_input(self):
        def test_shape():
            paddle.enable_static()

            self.input_x = np.random.rand(5, 100).astype("float64")
            self.input_vec = np.random.rand(100).astype("float64")

            data_x = paddle.static.data("x", shape=[5, 100], dtype="float64")
            data_vec = paddle.static.data(
                "vec", shape=[100, 2], dtype="float64")
            result_vec = paddle.mv(data_x, data_vec)

        self.assertRaises(ValueError, test_shape)


if __name__ == '__main__':
    unittest.main()