test_pass_builder.py 4.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
from simple_nets import simple_fc_net
18 19
import paddle.fluid as fluid
import paddle.fluid.core as core
20
from paddle.fluid import compiler
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
import numpy as np
import unittest
import os
import sys
import math


class TestPassBuilder(unittest.TestCase):
    def check_network_convergence(self, use_cuda, build_strategy=None):
        os.environ['CPU_NUM'] = str(4)
        main = fluid.Program()
        startup = fluid.Program()
        with fluid.program_guard(main, startup):
            loss = simple_fc_net()
            test_program = main.clone(for_test=True)

            opt = fluid.optimizer.SGD(learning_rate=0.001)
            opt.minimize(loss)

            batch_size = 32
            image = np.random.normal(size=(batch_size, 784)).astype('float32')
            label = np.random.randint(0, 10, (batch_size, 1), dtype="int64")

            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup)
            feed_dict = {'image': image, 'label': label}

49 50 51
            train_cp = compiler.CompiledProgram(main).with_data_parallel(
                loss_name=loss.name, build_strategy=build_strategy)
            test_cp = compiler.CompiledProgram(test_program).with_data_parallel(
52
                loss_name=loss.name,
53 54
                build_strategy=build_strategy,
                share_vars_from=train_cp)
55 56

            for i in range(5):
57 58 59 60 61 62 63
                _ = exe.run(train_cp, fetch_list=[loss.name], feed=feed_dict)
                test_loss, = exe.run(test_cp,
                                     fetch_list=[loss.name],
                                     feed=feed_dict)
                train_loss = exe.run(train_cp,
                                     fetch_list=[loss.name],
                                     feed=feed_dict)
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

                avg_test_loss_val = np.array(test_loss).mean()
                if math.isnan(float(avg_test_loss_val)):
                    sys.exit("got NaN loss, testing failed.")

                avg_train_loss_val = np.array(train_loss).mean()
                if math.isnan(float(avg_train_loss_val)):
                    sys.exit("got NaN loss, training failed.")

                self.assertTrue(
                    np.allclose(
                        train_loss, test_loss, atol=1e-8),
                    "Train loss: " + str(train_loss) + "\n Test loss:" +
                    str(test_loss))

    def test_parallel_testing_with_new_strategy(self):
        build_strategy = fluid.BuildStrategy()
X
Xin Pan 已提交
81 82
        self.assertFalse(build_strategy.fuse_elewise_add_act_ops)
        build_strategy.fuse_elewise_add_act_ops = True
83 84 85
        #FIXME: currently fuse_elewise_add_act_ops not compatible with below options
        build_strategy.enable_inplace = False
        build_strategy.memory_optimize = False
86
        pass_builder = build_strategy._finalize_strategy_and_create_passes()
X
Xin Pan 已提交
87 88 89
        self.assertTrue("fuse_elewise_add_act_pass" in
                        [p.type() for p in pass_builder.all_passes()])

X
fix  
Xin Pan 已提交
90 91
        origin_len = len(pass_builder.all_passes())

92
        viz_pass = pass_builder.append_pass("graph_viz_pass")
X
fix  
Xin Pan 已提交
93 94 95 96 97 98
        self.assertEqual(origin_len + 1, len(pass_builder.all_passes()))

        pass_builder.insert_pass(
            len(pass_builder.all_passes()), "graph_viz_pass")
        self.assertEqual(origin_len + 2, len(pass_builder.all_passes()))

99
        pass_builder.remove_pass(len(pass_builder.all_passes()) - 1)
X
fix  
Xin Pan 已提交
100
        self.assertEqual(origin_len + 1, len(pass_builder.all_passes()))
101 102 103
        current_path = os.path.abspath(os.path.dirname(__file__))
        graph_viz_path = current_path + os.sep + 'tmp' + os.sep + 'test_viz_pass'
        viz_pass.set("graph_viz_path", graph_viz_path)
104 105 106 107

        self.check_network_convergence(
            use_cuda=core.is_compiled_with_cuda(),
            build_strategy=build_strategy)
X
fix  
Xin Pan 已提交
108
        try:
109
            os.stat(graph_viz_path)
X
fix  
Xin Pan 已提交
110 111
        except os.error:
            self.assertFalse(True)
112 113 114 115


if __name__ == '__main__':
    unittest.main()