squared_l2_distance_op.h 5.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
Yi Wang 已提交
16 17
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
18 19 20 21 22

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
23 24 25
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
26 27
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
28
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
29

Q
QI JUN 已提交
30
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
31
class SquaredL2DistanceKernel : public framework::OpKernel<T> {
32 33
 public:
  void Compute(const framework::ExecutionContext& context) const override {
34 35 36 37 38 39 40 41
    auto* in0 = context.Input<Tensor>("X");
    auto* in1 = context.Input<Tensor>("Y");
    auto* out0 = context.Output<Tensor>("sub_result");
    auto* out1 = context.Output<Tensor>("Out");

    auto in0_dims = in0->dims();
    auto in1_dims = in1->dims();

42
    int cols = in0->numel() / in0_dims[0];
43 44 45 46 47 48 49 50 51
    // reduce dimensions except the first
    auto x =
        EigenMatrix<T>::From(*in0, framework::make_ddim({in0_dims[0], cols}));
    auto y =
        EigenMatrix<T>::From(*in1, framework::make_ddim({in1_dims[0], cols}));

    out0->mutable_data<T>(context.GetPlace());
    out1->mutable_data<T>(context.GetPlace());
    auto sub_result = EigenMatrix<T>::From(*out0);
52
    auto z = EigenVector<T>::Flatten(*out1);
53

Q
QI JUN 已提交
54 55
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
56 57
    auto x_dims = x.dimensions();
    auto y_dims = y.dimensions();
58
    // buffer the substraction result
59
    if (y_dims[0] == 1 && x_dims[0] > y_dims[0]) {
Y
yangyaming 已提交
60 61
      sub_result.device(place) =
          x -
62
          y.broadcast(Eigen::array<int, 2>({{static_cast<int>(x_dims[0]), 1}}));
63
    } else {
64
      sub_result.device(place) = x - y;
65
    }
Y
yangyaming 已提交
66
    auto sub_res_pow2 = sub_result * sub_result;
67
    z.device(place) = sub_res_pow2.sum(Eigen::array<int, 1>({{1}}));
68 69 70
  }
};

Q
QI JUN 已提交
71
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
72
class SquaredL2DistanceGradKernel : public framework::OpKernel<T> {
73 74
 public:
  void Compute(const framework::ExecutionContext& context) const override {
75 76 77 78
    auto* in0 = context.Input<Tensor>("sub_result");
    auto* in1 = context.Input<Tensor>(framework::GradVarName("Out"));
    auto* x_g = context.Output<Tensor>(framework::GradVarName("X"));
    auto* y_g = context.Output<Tensor>(framework::GradVarName("Y"));
79

80 81 82 83 84 85 86 87 88 89
    PADDLE_ENFORCE_NOT_NULL(
        x_g, platform::errors::NotFound(
                 "variable(%s) cannot be found "
                 "in scope for operator 'squared_l2_distance_grad'.",
                 framework::GradVarName("X")));
    PADDLE_ENFORCE_NOT_NULL(
        y_g, platform::errors::NotFound(
                 "variable(%s) cannot be found "
                 "in scope for operator 'squared_l2_distance_grad'.",
                 framework::GradVarName("Y")));
L
liuwei1031 已提交
90

91 92
    auto sub_result = EigenMatrix<T>::From(*in0);
    auto out_grad = EigenMatrix<T>::From(*in1);
93

94 95
    auto x_dims = x_g->dims();
    auto y_dims = y_g->dims();
96

97
    int cols = x_g->numel() / x_dims[0];
98
    // calculate gradient
99 100 101
    auto grad_mat = 2 *
                    (out_grad.broadcast(Eigen::array<int, 2>({{1, cols}}))) *
                    sub_result;
102 103

    // propagate back to input
Q
QI JUN 已提交
104 105
    auto& eigen_place =
        *context.template device_context<DeviceContext>().eigen_device();
106

L
liuwei1031 已提交
107 108 109 110 111 112 113 114 115 116
    x_g->mutable_data<T>(context.GetPlace());
    // eigen matrix
    auto x_grad =
        EigenMatrix<T>::From(*x_g, framework::make_ddim({x_dims[0], cols}));
    // dimensions are same with subResult
    x_grad.device(eigen_place) = grad_mat;

    y_g->mutable_data<T>(context.GetPlace());

    PADDLE_ENFORCE_GE(sub_result.dimensions()[0], y_dims[0],
117 118 119 120 121
                      platform::errors::InvalidArgument(
                          "First dimension of gradient must be greater or "
                          "equal than first dimension of target. But received "
                          "gradient dimension = %d and target dimension is %d.",
                          sub_result.dimensions()[0], y_dims[0]));
L
liuwei1031 已提交
122 123 124 125 126 127 128 129 130

    if (sub_result.dimensions()[0] == y_dims[0]) {
      auto y_grad =
          EigenMatrix<T>::From(*y_g, framework::make_ddim({y_dims[0], cols}));
      y_grad.device(eigen_place) = -1 * grad_mat;
    } else {
      auto col_sum_res = -1 * (grad_mat.sum(Eigen::array<int, 1>({{0}})));
      auto y_grad = EigenVector<T>::Flatten(*y_g);
      y_grad.device(eigen_place) = col_sum_res;
131
    }
132 133 134 135 136
  }
};

}  // namespace operators
}  // namespace paddle