nan_inf_utils_detail.cc 20.9 KB
Newer Older
W
WangXi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/details/nan_inf_utils.h"
#include "paddle/fluid/framework/details/nan_inf_utils_detail.h"
#include "paddle/fluid/framework/op_proto_maker.h"
18 19

#ifdef PADDLE_WITH_ASCEND_CL
20
#include "paddle/fluid/platform/device/npu/npu_op_runner.h"
21 22
#endif

W
WangXi 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
namespace paddle {
namespace framework {
namespace details {

static std::once_flag white_list_init_flag;

static int op_role_nan_inf_white_list = 0;

static constexpr int FORWARD = 0x10000;

// lazy init
static const std::unordered_map<std::string, int>& role_str2int() {
  /* In op_proto_maker.h
   * framework::OpRole::kForward      = 0x0000,
   * framework::OpRole::kBackward     = 0x0001,
   * framework::OpRole::kOptimize     = 0x0002,
   * framework::OpRole::kRPC          = 0x0004,
   * framework::OpRole::kDist         = 0x0008,
   * framework::OpRole::kLRSched      = 0x0010,
   * framework::OpRole::kLoss         = 0x0100,
   * framework::OpRole::kNotSpecified = 0x1000,
   */
  static const std::unordered_map<std::string, int> _role_str2int = {
      {"forward", FORWARD}, /* kForward=0, can't filter */
      {"backward", static_cast<int>(framework::OpRole::kBackward)},
      {"optimize", static_cast<int>(framework::OpRole::kOptimize)},
      {"rpc", static_cast<int>(framework::OpRole::kRPC)},
      {"dist", static_cast<int>(framework::OpRole::kDist)},
      {"lrsched", static_cast<int>(framework::OpRole::kLRSched)},
      {"loss", static_cast<int>(framework::OpRole::kLoss)},
      {"default", static_cast<int>(framework::OpRole::kNotSpecified)},
  };
  return _role_str2int;
}

static std::unordered_set<std::string>& op_type_nan_inf_white_list() {
  static std::unordered_set<std::string> _op_type_nan_inf_white_list = {
      "coalesce_tensor", /* This Op will alloc tensor, and may not init space */
  };
  return _op_type_nan_inf_white_list;
}

static std::unordered_map<std::string, std::vector<std::string>>&
op_var_nan_inf_white_list() {
  static std::unordered_map<std::string, std::vector<std::string>>
      _op_var_nan_inf_white_list = {
          /* encoded & gather var consist of idx&val, can't judge directly */
          {"dgc", {"__dgc_encoded__", "__dgc_gather__"}},
      };
  return _op_var_nan_inf_white_list;
}

static void InitWhiteListFormEnv() {
  // op_type_skip and op_var_skip may be NULL.
  // So need init static value in there, prevent thread competition.
  // NOTE. role_str2int needn't do this for it only used in this func.
  op_type_nan_inf_white_list();
  op_var_nan_inf_white_list();

  // export PADDLE_INF_NAN_SKIP_OP="op0,op1,op2"
  // export PADDLE_INF_NAN_SKIP_ROLE="role1,role2,role3"
  // export PADDLE_INF_NAN_SKIP_VAR="op0:var0,op0:var1,op1:var0"
  const char* op_type_skip = std::getenv("PADDLE_INF_NAN_SKIP_OP");
  const char* op_role_skip = std::getenv("PADDLE_INF_NAN_SKIP_ROLE");
  const char* op_var_skip = std::getenv("PADDLE_INF_NAN_SKIP_VAR");

  if (op_type_skip != NULL) {
    std::stringstream ss(op_type_skip);
    std::string op_type;
    while (std::getline(ss, op_type, ',')) {
      op_type_nan_inf_white_list().emplace(op_type);
    }
  }

  if (op_role_skip != NULL) {
    std::stringstream ss(op_role_skip);
    std::string op_role;
    while (std::getline(ss, op_role, ',')) {
      PADDLE_ENFORCE_EQ(role_str2int().find(op_role) != role_str2int().end(),
                        true,
                        platform::errors::InvalidArgument(
                            "Skip role must be one of "
                            "{forward,backward,optimize,rpc,dist,lrsched,loss,"
                            "default}, instead of %s",
                            op_role));
      op_role_nan_inf_white_list |= role_str2int().at(op_role);
    }
  }

  if (op_var_skip != NULL) {
    std::stringstream ss(op_var_skip);
    std::string op_var;
    while (std::getline(ss, op_var, ',')) {
      auto pos = op_var.find(":");
      PADDLE_ENFORCE_EQ(
          pos != std::string::npos, true,
          platform::errors::InvalidArgument(
              "Skip var format must be op:var, instead of %s", op_var));
      std::string op = op_var.substr(0, pos);
      std::string var = op_var.substr(pos + 1);

      op_var_nan_inf_white_list()[op].emplace_back(var);
    }
  }
}

template <typename T>
static void PrintNanInf(const T* value, const size_t numel, int print_num,
131 132 133 134
                        const std::string& op_type, const std::string& var_name,
                        bool abort = true) {
  T min_value = std::numeric_limits<T>::max();
  T max_value = std::numeric_limits<T>::min();
W
WangXi 已提交
135 136 137 138 139 140 141 142 143 144 145 146
  size_t nan_count, inf_count, num_count;
  nan_count = inf_count = num_count = 0;

  // CPU print num value
  for (size_t i = 0; i < numel; ++i) {
    size_t count = 0;
    if (std::isnan(value[i])) {
      count = nan_count++;
    } else if (std::isinf(value[i])) {
      count = inf_count++;
    } else {
      count = num_count++;
147 148
      min_value = std::min(min_value, value[i]);
      max_value = std::max(max_value, value[i]);
W
WangXi 已提交
149 150 151 152 153 154 155
    }

    if (count < static_cast<size_t>(print_num)) {
      printf("numel:%lu index:%lu value:%f\n", static_cast<uint64_t>(numel),
             static_cast<uint64_t>(i), static_cast<float>(value[i]));
    }
  }
156 157 158 159 160 161 162 163 164 165 166
  printf(
      "In cpu, there has %lu,%lu,%lu nan,inf,num. "
      "And in num, min_value is %f, max_value is %f\n",
      static_cast<uint64_t>(nan_count), static_cast<uint64_t>(inf_count),
      static_cast<uint64_t>(num_count), static_cast<double>(min_value),
      static_cast<double>(max_value));
  if (abort) {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "There are `nan` or `inf` in tensor (%s) of operator (%s).", var_name,
        op_type));
  }
W
WangXi 已提交
167 168 169 170 171 172 173
}

// openmp 4.0, reduction with fp16
#if defined _OPENMP && _OPENMP >= 201307
// more detail see: 180 page of
// https://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
#pragma omp declare reduction(+ : paddle::platform::float16 : omp_out += omp_in)
174 175
#pragma omp declare reduction(+ : paddle::platform::bfloat16 : omp_out += \
                              omp_in)
176 177 178 179 180
#pragma omp declare reduction(+ : paddle::platform::complex < \
                                  float > : omp_out += omp_in)
#pragma omp declare reduction(+ : paddle::platform::complex < \
                                  double > : omp_out += omp_in)

W
WangXi 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
#endif

template <typename T>
static void CheckNanInf(const T* value, const size_t numel, int print_num,
                        const std::string& op_type,
                        const std::string& var_name) {
  T sum = static_cast<T>(0.0);
#if defined _OPENMP && _OPENMP >= 201307
#pragma omp parallel for simd reduction(+ : sum)
#elif defined _OPENMP
#pragma omp parallel for reduction(+ : sum)
#endif
  for (size_t i = 0; i < numel; ++i) {
    sum += (value[i] - value[i]);
  }

  if (std::isnan(sum) || std::isinf(sum)) {
    PrintNanInf(value, numel, print_num, op_type, var_name);
  }
}

#if defined _OPENMP && _OPENMP >= 201307
// openmp4.0 not need to specialization fp16
#elif defined _OPENMP
template <>
void CheckNanInf<paddle::platform::float16>(
    const paddle::platform::float16* value, const size_t numel, int print_num,
    const std::string& op_type, const std::string& var_name) {
  float sum = 0.0f;
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
#pragma omp parallel for reduction(+ : sum)
  for (size_t i = 0; i < numel; ++i) {
    sum += static_cast<float>(value[i] - value[i]);
  }

  if (std::isnan(sum) || std::isinf(sum)) {
    PrintNanInf(value, numel, print_num, op_type, var_name);
  }
}

template <>
void CheckNanInf<paddle::platform::bfloat16>(
    const paddle::platform::bfloat16* value, const size_t numel, int print_num,
    const std::string& op_type, const std::string& var_name) {
  float sum = 0.0f;
W
WangXi 已提交
225 226 227 228 229 230 231 232 233
#pragma omp parallel for reduction(+ : sum)
  for (size_t i = 0; i < numel; ++i) {
    sum += static_cast<float>(value[i] - value[i]);
  }

  if (std::isnan(sum) || std::isinf(sum)) {
    PrintNanInf(value, numel, print_num, op_type, var_name);
  }
}
234

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
template <>
void CheckNanInf<paddle::platform::complex<float>>(
    const paddle::platform::complex<float>* value, const size_t numel,
    int print_num, const std::string& op_type, const std::string& var_name) {
  float real_sum = 0.0f;
#pragma omp parallel for reduction(+ : real_sum)
  for (size_t i = 0; i < numel; ++i) {
    real_sum += (value[i].real - value[i].real);
  }

  float imag_sum = 0.0f;
#pragma omp parallel for reduction(+ : imag_sum)
  for (size_t i = 0; i < numel; ++i) {
    imag_sum += (value[i].imag - value[i].imag);
  }

  if (std::isnan(real_sum) || std::isinf(real_sum) || std::isnan(imag_sum) ||
      std::isinf(imag_sum)) {
    // hot fix for compile failed in gcc4.8
    // here also need print detail info of nan or inf later
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "There are `nan` or `inf` in tensor (%s) of operator (%s).", var_name,
        op_type));
  }
}

template <>
    void CheckNanInf<paddle::platform::complex<double>>>
    (const paddle::platform::complex<double>* value, const size_t numel,
     int print_num, const std::string& op_type, const std::string& var_name) {
  double real_sum = 0.0;
#pragma omp parallel for reduction(+ : real_sum)
  for (size_t i = 0; i < numel; ++i) {
    real_sum += (value[i].real - value[i].real);
  }

  double imag_sum = 0.0;
#pragma omp parallel for reduction(+ : imag_sum)
  for (size_t i = 0; i < numel; ++i) {
    imag_sum += (value[i].imag - value[i].imag);
  }

  if (std::isnan(real_sum) || std::isinf(real_sum) || std::isnan(imag_sum) ||
      std::isinf(imag_sum)) {
    // hot fix for compile failed in gcc4.8
    // here also need print detail info of nan or inf later
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "There are `nan` or `inf` in tensor (%s) of operator (%s).", var_name,
        op_type));
  }
}

W
WangXi 已提交
287 288 289 290 291
#endif

template <>
template <typename T>
void TensorCheckerVisitor<platform::CPUDeviceContext>::apply(
292 293 294 295 296
    typename std::enable_if<
        std::is_floating_point<T>::value ||
        std::is_same<T, ::paddle::platform::complex<float>>::value ||
        std::is_same<T, ::paddle::platform::complex<double>>::value>::type*)
    const {
W
WangXi 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
  // use env strategy control in future, -1=print_all.
  int print_num = 3;
  CheckNanInf(tensor_.data<T>(), tensor_.numel(), print_num, op_type_,
              var_name_);
}

template <>
void tensor_check<platform::CPUDeviceContext>(const std::string& op_type,
                                              const std::string& var_name,
                                              const framework::Tensor& tensor,
                                              const platform::Place& place) {
  TensorCheckerVisitor<platform::CPUDeviceContext> vistor(op_type, var_name,
                                                          tensor, place);
  VisitDataType(tensor.type(), vistor);
}

void CheckVarHasNanOrInf(const std::string& op_type,
                         const std::string& var_name,
315
                         const framework::Variable* var,
W
WangXi 已提交
316 317
                         const platform::Place& place) {
  PADDLE_ENFORCE_NOT_NULL(
318 319
      var, platform::errors::NotFound("Cannot find var: `%s` in op `%s`.",
                                      var_name, op_type));
W
WangXi 已提交
320 321 322 323

  const Tensor* tensor{nullptr};
  if (var->IsType<framework::LoDTensor>()) {
    tensor = &var->Get<framework::LoDTensor>();
324 325
  } else if (var->IsType<pten::SelectedRows>()) {
    tensor = &var->Get<pten::SelectedRows>().value();
W
WangXi 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339
  } else {
    VLOG(10) << var_name << " var_name need not to check";
    return;
  }

  if (tensor->memory_size() == 0) {
    VLOG(10) << var_name << " var_name need not to check, size == 0";
    return;
  }

  VLOG(10) << "begin check " << op_type << " var_name:" << var_name
           << ", place:" << tensor->place() << ", numel:" << tensor->numel();

  if (platform::is_gpu_place(tensor->place())) {
340
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
W
WangXi 已提交
341 342 343 344 345 346
    tensor_check<platform::CUDADeviceContext>(op_type, var_name, *tensor,
                                              place);
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Tensor[%s] use gpu place. PaddlePaddle must compile with GPU.",
        var_name));
347 348 349 350 351 352 353 354 355
#endif
    return;
  } else if (platform::is_xpu_place(tensor->place())) {
#ifdef PADDLE_WITH_XPU
    if (tensor->type() != proto::VarType::FP32) {
      return;
    }

    float* cpu_data = new float[tensor->numel()];
T
taixiurong 已提交
356
    memory::Copy(platform::CPUPlace(), static_cast<void*>(cpu_data),
357
                 tensor->place(),
T
taixiurong 已提交
358 359
                 static_cast<const void*>(tensor->data<float>()),
                 tensor->numel() * sizeof(float));
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
    bool flag = false;
    for (int i = 0; i < tensor->numel(); i++) {
      if (isnan(cpu_data[i]) || isinf(cpu_data[i])) {
        flag = true;
        break;
      }
    }
    delete[] cpu_data;
    PADDLE_ENFORCE_NE(
        flag, true,
        platform::errors::Fatal("Operator %s output Tensor %s contains Inf.",
                                op_type, var_name));
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Tensor[%s] use xpu place. PaddlePaddle must compile with XPU.",
        var_name));
W
WangXi 已提交
376 377
#endif
    return;
378 379 380 381 382 383 384 385 386 387
  } else if (platform::is_npu_place(tensor->place())) {
#ifdef PADDLE_WITH_ASCEND_CL
    if (tensor->type() != proto::VarType::FP32) {
      return;
    }

    framework::LoDTensor cpu_tensor;
    cpu_tensor.Resize(tensor->dims());
    float* cpu_data = static_cast<float*>(
        cpu_tensor.mutable_data(platform::CPUPlace(), tensor->type()));
W
WangXi 已提交
388

389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
    framework::TensorCopySync(*tensor, platform::CPUPlace(), &cpu_tensor);
    bool flag = false;
    for (int i = 0; i < cpu_tensor.numel(); i++) {
      if (isnan(cpu_data[i]) || isinf(cpu_data[i])) {
        flag = true;
        break;
      }
    }
    PADDLE_ENFORCE_NE(
        flag, true,
        platform::errors::Fatal("Operator %s output Tensor %s contains Inf.",
                                op_type, var_name));
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Tensor[%s] use npu place. PaddlePaddle must compile with NPU.",
        var_name));
#endif
    return;
  }
W
WangXi 已提交
408 409 410
  tensor_check<platform::CPUDeviceContext>(op_type, var_name, *tensor, place);
}

411
void CheckVarHasNanOrInf(const std::string& op_type,
412
                         const framework::ScopeBase& scope,
413 414 415 416 417 418
                         const std::string& var_name,
                         const platform::Place& place) {
  auto* var = scope.FindVar(var_name);
  CheckVarHasNanOrInf(op_type, var_name, var, place);
}

W
WangXi 已提交
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
bool IsSkipOp(const framework::OperatorBase& op) {
  if (op_type_nan_inf_white_list().count(op.Type()) != 0) return true;

  int op_role = op.template Attr<int>(
      framework::OpProtoAndCheckerMaker::OpRoleAttrName());

  // kForward=0, can't filter
  if (op_role == static_cast<int>(framework::OpRole::kForward)) {
    op_role = FORWARD;
  }
  if (op_role_nan_inf_white_list & op_role) return true;

  return false;
}

434 435 436 437 438 439 440 441 442 443 444
#ifdef PADDLE_WITH_ASCEND_CL
using NpuOpRunner = paddle::operators::NpuOpRunner;

constexpr int FLOAT_STATUS_SIZE = 8;

static framework::Tensor& npu_float_status() {
  static framework::Tensor float_status;
  return float_status;
}

void NPUAllocAndClearFloatStatus(const framework::OperatorBase& op,
445
                                 const framework::ScopeBase& scope,
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
                                 const platform::Place& place) {
  if (!platform::is_npu_place(place)) return;

  std::call_once(white_list_init_flag, InitWhiteListFormEnv);
  if (IsSkipOp(op)) return;

  auto* dev_ctx = reinterpret_cast<platform::NPUDeviceContext*>(
      platform::DeviceContextPool::Instance().Get(place));
  auto stream = dev_ctx->stream();

  auto& flag = npu_float_status();
  flag.mutable_data<float>({FLOAT_STATUS_SIZE}, place);
  NpuOpRunner("NPUAllocFloatStatus", {}, {flag}).Run(stream);

  framework::Tensor tmp;
  tmp.mutable_data<float>({FLOAT_STATUS_SIZE}, place);
  NpuOpRunner("NPUClearFloatStatus", {tmp}, {flag}).Run(stream);
}

void PrintNpuVarInfo(const std::string& op_type, const std::string& var_name,
                     const framework::Variable* var,
                     const platform::Place& place) {
  const Tensor* tensor{nullptr};
  if (var->IsType<framework::LoDTensor>()) {
    tensor = &var->Get<framework::LoDTensor>();
471 472
  } else if (var->IsType<pten::SelectedRows>()) {
    tensor = &var->Get<pten::SelectedRows>().value();
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
  } else {
    VLOG(10) << var_name << " var_name need not to check";
    return;
  }

  if ((tensor->type() != proto::VarType::FP32) &&
      (tensor->type() != proto::VarType::FP16)) {
    return;
  }

  if (tensor->memory_size() == 0) {
    VLOG(10) << var_name << " var_name need not to check, size == 0";
    return;
  }

  VLOG(10) << "begin check " << op_type << " var_name:" << var_name
           << ", place:" << tensor->place() << ", numel:" << tensor->numel();

  framework::Tensor cpu_tensor;
  cpu_tensor.Resize(tensor->dims());
  cpu_tensor.mutable_data(platform::CPUPlace(), tensor->type());
  framework::TensorCopySync(*tensor, platform::CPUPlace(), &cpu_tensor);

  LOG(WARNING) << "print [" << var_name << "] tensor info:";
  // use env strategy control in future, -1=print_all.
  int print_num = 3;
  if (tensor->type() == proto::VarType::FP32) {
    const float* value = cpu_tensor.data<float>();
    PrintNanInf(value, tensor->numel(), print_num, op_type, var_name, false);
  } else if (tensor->type() == proto::VarType::FP16) {
    const paddle::platform::float16* value =
        cpu_tensor.data<paddle::platform::float16>();
    PrintNanInf(value, tensor->numel(), print_num, op_type, var_name, false);
  }
}

void PrintNPUOpValueInfo(const framework::OperatorBase& op,
510
                         const framework::ScopeBase& scope,
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
                         const platform::Place& place) {
  LOG(WARNING) << "There are `nan` or `inf` in operator (" << op.Type()
               << "), here we print some tensor value info of this op.";
  for (auto& vname : op.InputVars()) {
    auto* var = scope.FindVar(vname);
    if (var == nullptr) continue;
    PrintNpuVarInfo(op.Type(), vname, var, place);
  }

  for (auto& vname : op.OutputVars(true)) {
    auto* var = scope.FindVar(vname);
    if (var == nullptr) continue;
    PrintNpuVarInfo(op.Type(), vname, var, place);
  }
}

static void NPUCheckOpHasNanOrInf(const framework::OperatorBase& op,
528
                                  const framework::ScopeBase& scope,
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
                                  const platform::Place& place) {
  if (!platform::is_npu_place(place)) return;

  auto* dev_ctx = reinterpret_cast<platform::NPUDeviceContext*>(
      platform::DeviceContextPool::Instance().Get(place));
  auto stream = dev_ctx->stream();

  auto& flag = npu_float_status();
  Tensor tmp;
  tmp.mutable_data<float>({FLOAT_STATUS_SIZE}, place);
  // NPUGetFloatStatus updates data on input in-place.
  // tmp is only placeholder.
  NpuOpRunner("NPUGetFloatStatus", {flag}, {tmp}).Run(stream);

  framework::Tensor cpu_tensor;
  auto cpu_place = platform::CPUPlace();
  float* cpu_data = static_cast<float*>(
      cpu_tensor.mutable_data<float>({FLOAT_STATUS_SIZE}, cpu_place));

  framework::TensorCopySync(flag, cpu_place, &cpu_tensor);
  float sum = 0.0;
  for (int i = 0; i < FLOAT_STATUS_SIZE; ++i) {
    sum += cpu_data[i];
  }

  if (sum >= 1.0) PrintNPUOpValueInfo(op, scope, place);

556 557
  PADDLE_ENFORCE_LT(sum, 1.0, platform::errors::PreconditionNotMet(
                                  "Operator %s contains Nan/Inf.", op.Type()));
558 559 560
}
#endif

W
WangXi 已提交
561
void CheckOpHasNanOrInf(const framework::OperatorBase& op,
562
                        const framework::ScopeBase& exec_scope,
W
WangXi 已提交
563 564 565 566 567
                        const platform::Place& place) {
  std::call_once(white_list_init_flag, InitWhiteListFormEnv);

  if (IsSkipOp(op)) return;

568 569 570 571 572 573 574
#ifdef PADDLE_WITH_ASCEND_CL
  if (platform::is_npu_place(place)) {
    NPUCheckOpHasNanOrInf(op, exec_scope, place);
    return;
  }
#endif

W
WangXi 已提交
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
  if (op_var_nan_inf_white_list().count(op.Type()) == 0) {
    // NOTE. vname may destruct in the end of this func.
    for (auto& vname : op.OutputVars(true)) {
      auto* var = exec_scope.FindVar(vname);
      if (var == nullptr) continue;
      CheckVarHasNanOrInf(op.Type(), exec_scope, vname, place);
    }
  } else {
    for (auto& vname : op.OutputVars(true)) {
      bool need_check = true;
      for (auto& white_vname : op_var_nan_inf_white_list().at(op.Type())) {
        if (vname.find(white_vname) != std::string::npos) {
          need_check = false;
          break;
        }
      }
      if (!need_check) continue;
      auto* var = exec_scope.FindVar(vname);
      if (var == nullptr) continue;
      CheckVarHasNanOrInf(op.Type(), exec_scope, vname, place);
    }
  }
}

}  // namespace details
}  // namespace framework
}  // namespace paddle