yolo_box_op.cu 4.7 KB
Newer Older
D
dengkaipeng 已提交
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
D
dengkaipeng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/memory/malloc.h"
D
dengkaipeng 已提交
16
#include "paddle/fluid/operators/detection/yolo_box_op.h"
D
dengkaipeng 已提交
17
#include "paddle/fluid/operators/math/math_function.h"
D
dengkaipeng 已提交
18 19 20 21 22 23 24

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T>
D
dengkaipeng 已提交
25
__global__ void KeYoloBoxFw(const T* input, const int* imgsize, T* boxes,
D
dengkaipeng 已提交
26 27 28
                            T* scores, const float conf_thresh,
                            const int* anchors, const int n, const int h,
                            const int w, const int an_num, const int class_num,
29
                            const int box_num, int input_size, bool clip_bbox) {
D
dengkaipeng 已提交
30 31
  int tid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;
D
dengkaipeng 已提交
32
  T box[4];
33
  for (; tid < n * box_num; tid += stride) {
D
dengkaipeng 已提交
34 35 36 37 38 39
    int grid_num = h * w;
    int i = tid / box_num;
    int j = (tid % box_num) / grid_num;
    int k = (tid % grid_num) / w;
    int l = tid % w;

40
    int an_stride = (5 + class_num) * grid_num;
D
dengkaipeng 已提交
41 42 43 44 45 46 47 48 49 50 51 52
    int img_height = imgsize[2 * i];
    int img_width = imgsize[2 * i + 1];

    int obj_idx =
        GetEntryIndex(i, j, k * w + l, an_num, an_stride, grid_num, 4);
    T conf = sigmoid<T>(input[obj_idx]);
    if (conf < conf_thresh) {
      continue;
    }

    int box_idx =
        GetEntryIndex(i, j, k * w + l, an_num, an_stride, grid_num, 0);
D
dengkaipeng 已提交
53
    GetYoloBox<T>(box, input, anchors, l, k, j, h, input_size, box_idx,
D
dengkaipeng 已提交
54
                  grid_num, img_height, img_width);
D
dengkaipeng 已提交
55
    box_idx = (i * box_num + j * grid_num + k * w + l) * 4;
56
    CalcDetectionBox<T>(boxes, box, box_idx, img_height, img_width, clip_bbox);
D
dengkaipeng 已提交
57 58 59

    int label_idx =
        GetEntryIndex(i, j, k * w + l, an_num, an_stride, grid_num, 5);
60
    int score_idx = (i * box_num + j * grid_num + k * w + l) * class_num;
D
dengkaipeng 已提交
61 62 63
    CalcLabelScore<T>(scores, input, label_idx, score_idx, class_num, conf,
                      grid_num);
  }
D
dengkaipeng 已提交
64 65 66 67 68 69
}

template <typename T>
class YoloBoxOpCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
D
dengkaipeng 已提交
70
    auto* input = ctx.Input<Tensor>("X");
D
dengkaipeng 已提交
71
    auto* img_size = ctx.Input<Tensor>("ImgSize");
D
dengkaipeng 已提交
72 73 74 75 76 77 78
    auto* boxes = ctx.Output<Tensor>("Boxes");
    auto* scores = ctx.Output<Tensor>("Scores");

    auto anchors = ctx.Attr<std::vector<int>>("anchors");
    int class_num = ctx.Attr<int>("class_num");
    float conf_thresh = ctx.Attr<float>("conf_thresh");
    int downsample_ratio = ctx.Attr<int>("downsample_ratio");
79
    bool clip_bbox = ctx.Attr<bool>("clip_bbox");
D
dengkaipeng 已提交
80 81 82 83 84 85 86 87

    const int n = input->dims()[0];
    const int h = input->dims()[2];
    const int w = input->dims()[3];
    const int box_num = boxes->dims()[1];
    const int an_num = anchors.size() / 2;
    int input_size = downsample_ratio * h;

D
dengkaipeng 已提交
88 89
    auto& dev_ctx = ctx.cuda_device_context();
    int bytes = sizeof(int) * anchors.size();
90
    auto anchors_ptr = memory::Alloc(dev_ctx, sizeof(int) * anchors.size());
D
dengkaipeng 已提交
91 92 93 94
    int* anchors_data = reinterpret_cast<int*>(anchors_ptr->ptr());
    const auto gplace = boost::get<platform::CUDAPlace>(ctx.GetPlace());
    const auto cplace = platform::CPUPlace();
    memory::Copy(gplace, anchors_data, cplace, anchors.data(), bytes,
D
dengkaipeng 已提交
95
                 dev_ctx.stream());
D
dengkaipeng 已提交
96

D
dengkaipeng 已提交
97
    const T* input_data = input->data<T>();
D
dengkaipeng 已提交
98
    const int* imgsize_data = img_size->data<int>();
D
dengkaipeng 已提交
99 100 101
    T* boxes_data = boxes->mutable_data<T>({n, box_num, 4}, ctx.GetPlace());
    T* scores_data =
        scores->mutable_data<T>({n, box_num, class_num}, ctx.GetPlace());
D
dengkaipeng 已提交
102 103 104
    math::SetConstant<platform::CUDADeviceContext, T> set_zero;
    set_zero(dev_ctx, boxes, static_cast<T>(0));
    set_zero(dev_ctx, scores, static_cast<T>(0));
D
dengkaipeng 已提交
105

106 107
    int grid_dim = (n * box_num + 512 - 1) / 512;
    grid_dim = grid_dim > 8 ? 8 : grid_dim;
D
dengkaipeng 已提交
108

109
    KeYoloBoxFw<T><<<grid_dim, 512, 0, ctx.cuda_device_context().stream()>>>(
D
dengkaipeng 已提交
110
        input_data, imgsize_data, boxes_data, scores_data, conf_thresh,
111 112
        anchors_data, n, h, w, an_num, class_num, box_num, input_size,
        clip_bbox);
D
dengkaipeng 已提交
113
  }
D
dengkaipeng 已提交
114
};
D
dengkaipeng 已提交
115 116 117 118 119

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
D
dengkaipeng 已提交
120
REGISTER_OP_CUDA_KERNEL(yolo_box, ops::YoloBoxOpCUDAKernel<float>,
D
dengkaipeng 已提交
121
                        ops::YoloBoxOpCUDAKernel<double>);