activation_op.cc 3.4 KB
Newer Older
L
Luo Tao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/framework/op_registry.h"
L
Luo Tao 已提交
16 17 18 19 20 21
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"

namespace paddle {
namespace inference {
namespace tensorrt {

N
nhzlx 已提交
22
class ActivationOpConverter : public OpConverter {
L
Luo Tao 已提交
23
 public:
N
nhzlx 已提交
24
  ActivationOpConverter() {}
L
Luo Tao 已提交
25
  void operator()(const framework::proto::OpDesc& op,
L
Luo Tao 已提交
26
                  const framework::Scope& scope, bool test_mode) override {
27 28
    // Here the two nullptr looks strange, that's because the
    // framework::OpDesc's constructor is strange.
F
fengjiayi 已提交
29
    framework::OpDesc op_desc(op, nullptr);
30
    VLOG(3)
N
nhzlx 已提交
31 32 33
        << "convert a fluid Activation op to tensorrt activation layer whose "
           "type is "
        << op_type_;
L
Luo Tao 已提交
34
    const nvinfer1::ITensor* input_tensor =
35
        engine_->GetITensor(op_desc.Input("X")[0]);
N
nhzlx 已提交
36 37 38

    auto op_pair = ops.find(op_type_);
    if (op_pair == ops.end()) {
39 40 41
      PADDLE_THROW(platform::errors::Fatal(
          "Wrong activation op type, the trt do not support the %s act type.",
          op_type_));
N
nhzlx 已提交
42 43
    }

L
Luo Tao 已提交
44 45
    nvinfer1::IActivationLayer* layer = TRT_ENGINE_ADD_LAYER(
        engine_, Activation, *const_cast<nvinfer1::ITensor*>(input_tensor),
N
nhzlx 已提交
46
        op_pair->second);
47 48 49 50 51 52 53 54 55

#if IS_TRT_VERSION_GE(5130)
    // max(alpha, min(beta, x))
    if (op_type_ == "relu6") {
      layer->setAlpha(0.);
      layer->setBeta(6.);
    }
#endif

56
    auto output_name = op_desc.Output("Out")[0];
57 58 59

    RreplenishLayerAndOutput(layer, op_type_, {output_name}, test_mode);
    if (op_desc.HasAttr("out_scale")) {
60
#if IS_TRT_VERSION_GE(5130)
61 62 63
      float out_scale = boost::get<float>(op_desc.GetAttr("out_scale"));
      engine_->SetTensorDynamicRange(layer->getOutput(0), out_scale);
#endif
L
Luo Tao 已提交
64
    }
L
Luo Tao 已提交
65
  }
N
nhzlx 已提交
66 67 68 69 70 71 72 73 74 75 76

 protected:
  std::string op_type_;
  static const std::unordered_map<std::string, nvinfer1::ActivationType> ops;
};

const std::unordered_map<std::string, nvinfer1::ActivationType>
    ActivationOpConverter::ops = {
        {"relu", nvinfer1::ActivationType::kRELU},
        {"sigmoid", nvinfer1::ActivationType::kSIGMOID},
        {"tanh", nvinfer1::ActivationType::kTANH},
77 78 79
#if IS_TRT_VERSION_GE(5130)
        {"relu6", nvinfer1::ActivationType::kCLIP},
#endif
N
nhzlx 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
};

class ReluOpConverter : public ActivationOpConverter {
 public:
  ReluOpConverter() { op_type_ = "relu"; }
};

class SigmoidOpConverter : public ActivationOpConverter {
 public:
  SigmoidOpConverter() { op_type_ = "sigmoid"; }
};

class TanhOpConverter : public ActivationOpConverter {
 public:
  TanhOpConverter() { op_type_ = "tanh"; }
L
Luo Tao 已提交
95 96
};

97 98 99 100 101
class Relu6OpConverter : public ActivationOpConverter {
 public:
  Relu6OpConverter() { op_type_ = "relu6"; }
};

L
Luo Tao 已提交
102 103 104
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle
105 106

REGISTER_TRT_OP_CONVERTER(relu, ReluOpConverter);
N
nhzlx 已提交
107 108
REGISTER_TRT_OP_CONVERTER(sigmoid, SigmoidOpConverter);
REGISTER_TRT_OP_CONVERTER(tanh, TanhOpConverter);
109
REGISTER_TRT_OP_CONVERTER(relu6, Relu6OpConverter);