pool_op.cc 16.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/pool_op.h"
16 17 18 19 20 21
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
22 23 24 25

namespace paddle {
namespace operators {

26 27 28 29 30 31 32 33 34
int PoolOutputSize(int input_size, int filter_size, int padding, int stride,
                   bool ceil_mode) {
  int output_size;
  if (!ceil_mode) {
    output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  } else {
    output_size =
        (input_size - filter_size + 2 * padding + stride - 1) / stride + 1;
  }
C
chengduoZH 已提交
35 36 37 38 39
  PADDLE_ENFORCE(output_size > 0,
                 "Due to the settings of padding(%d), filter_size(%d) and "
                 "stride(%d), the output size is less than 0, please check "
                 "again. Input_size:%d",
                 padding, filter_size, stride, input_size);
40 41 42
  return output_size;
}

C
chengduo 已提交
43
void PoolOp::InferShape(framework::InferShapeContext* ctx) const {
44 45 46 47 48 49
  PADDLE_ENFORCE(ctx->HasInput("X"), "X(Input) of Pooling should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Out"),
                 "Out(Output) of Pooling should not be null.");

  auto in_x_dims = ctx->GetInputDim("X");

C
chengduoZH 已提交
50
  std::string pooling_type = ctx->Attrs().Get<std::string>("pooling_type");
51 52 53
  std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
54
  bool ceil_mode = ctx->Attrs().Get<bool>("ceil_mode");
55 56

  PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
C
chengduoZH 已提交
57
                 "Pooling intput should be 4-D or 5-D tensor.");
58

C
chengduoZH 已提交
59
  if (ctx->Attrs().Get<bool>("global_pooling")) {
60
    ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
C
fix bug  
chengduoZH 已提交
61 62
    for (size_t i = 0; i < ksize.size(); ++i) {
      paddings[i] = 0;
63
      ksize[i] = static_cast<int>(in_x_dims[i + 2]);
C
fix bug  
chengduoZH 已提交
64
    }
65
  }
66 67 68 69 70 71 72 73 74 75

  PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
                 "Input size and pooling size should be consistent.");
  PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
                    "Strides size and pooling size should be the same.");
  PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
                    "Paddings size and pooling size should be the same.");

  std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
  for (size_t i = 0; i < ksize.size(); ++i) {
76 77
    output_shape.push_back(PoolOutputSize(in_x_dims[i + 2], ksize[i],
                                          paddings[i], strides[i], ceil_mode));
78
  }
79
  ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
80
  ctx->ShareLoD("X", "Out");
81 82
}

83
framework::OpKernelType PoolOp::GetExpectedKernelType(
C
chengduo 已提交
84
    const framework::ExecutionContext& ctx) const {
85
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
86 87 88
  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
89
#ifdef PADDLE_WITH_CUDA
90 91
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
92 93
  }
#endif
94 95 96 97
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
98
    layout_ = framework::DataLayout::kMKLDNN;
99
  }
100
#endif
101

Y
Yu Yang 已提交
102 103
  return framework::OpKernelType(ctx.Input<Tensor>("X")->type(), ctx.GetPlace(),
                                 layout_, library_);
104 105
}

C
chengduo 已提交
106
void PoolOpGrad::InferShape(framework::InferShapeContext* ctx) const {
107 108 109 110 111 112
  PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
  PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                 "Input(X@GRAD) should not be null.");
  ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}

113
framework::OpKernelType PoolOpGrad::GetExpectedKernelType(
C
chengduo 已提交
114
    const framework::ExecutionContext& ctx) const {
115
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
116 117 118
  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
119
#ifdef PADDLE_WITH_CUDA
120 121
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
122 123
  }
#endif
124 125 126 127
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
128
    layout_ = framework::DataLayout::kMKLDNN;
129
  }
130
#endif
131

Y
Yu Yang 已提交
132
  auto input_data_type = ctx.Input<Tensor>("X")->type();
K
Kexin Zhao 已提交
133 134 135 136 137 138
  if (input_data_type == framework::proto::VarType::FP16) {
    PADDLE_ENFORCE_EQ(library_, framework::LibraryType::kCUDNN,
                      "float16 can only be used when CUDNN is used");
  }
  return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
                                 library_);
139 140
}

Y
Yu Yang 已提交
141
void Pool2dOpMaker::Make() {
142 143
  AddInput(
      "X",
C
chengduoZH 已提交
144
      "(Tensor) The input tensor of pooling operator. "
K
kexinzhao 已提交
145 146 147
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
148
  AddOutput("Out",
K
kexinzhao 已提交
149 150 151 152
            "(Tensor) The output tensor of pooling operator. "
            "The format of output tensor is also NCHW, "
            "where N is batch size, C is the number of channels, "
            "H is the height of the feature, "
153
            "and W is the width of the feature.");
154

C
chengduoZH 已提交
155
  AddAttr<std::string>("pooling_type",
C
chengduoZH 已提交
156 157
                       "(string), pooling type, can be \"max\" for max-pooling "
                       "and \"avg\" for average-pooling.")
158
      .InEnum({"max", "avg"});
C
fix bug  
chengduoZH 已提交
159
  AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
160 161
                            "(vector<int>) The pooling window "
                            "size(height, width) of the pooling operator. "
C
chengduoZH 已提交
162
                            "If global_pooling = true, ksize and paddings will "
C
fix bug  
chengduoZH 已提交
163 164
                            "be ignored.");  // TODO(Chengduo): Add checker.
                                             // (Currently,
C
fix doc  
chengduoZH 已提交
165
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
166
  AddAttr<bool>("global_pooling",
K
kexinzhao 已提交
167
                "(bool, default false) Whether to use the global pooling. "
C
chengduoZH 已提交
168
                "If global_pooling = true, ksize and paddings will be ignored.")
169
      .SetDefault(false);
K
kexinzhao 已提交
170 171 172
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default {1, 1}), strides(height, "
                            "width) of pooling operator.")
173 174
      .SetDefault({1, 1});
  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
175 176 177
  // TypedAttrChecker don't support vector type.)
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
178
      "(vector<int>, default {0,0}), paddings(height, width) of pooling "
K
kexinzhao 已提交
179
      "operator."
C
chengduoZH 已提交
180
      "If global_pooling = true, paddings and ksize will be ignored.")
181
      .SetDefault({0, 0});
182 183 184 185 186 187
  AddAttr<bool>(
      "exclusive",
      "(bool, default True) When true, will exclude the zero-padding in the "
      "averaging calculating, otherwise, include the zero-padding. Note, it "
      "is only used when pooling_type is avg. The defalut is True.")
      .SetDefault(true);
188 189 190 191
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
192 193 194
  AddAttr<bool>(
      "ceil_mode",
      "(bool, default false) Wether to use the ceil function to calculate "
W
wanghaoshuang 已提交
195 196
      "output height and width. False is the default. If it is set to False, "
      "the floor function will be used.")
197
      .SetDefault(false);
198 199 200
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
201 202 203 204 205 206 207
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
208 209 210 211 212
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);

213
  // TODO(dzhwinter): need to registered layout transform function
214 215

  AddComment(R"DOC(
C
chengduoZH 已提交
216
The pooling2d operation calculates the output based on
C
chengduoZH 已提交
217
the input, pooling_type and ksize, strides, paddings parameters.
K
kexinzhao 已提交
218 219
Input(X) and output(Out) are in NCHW format, where N is batch size, C is the
number of channels, H is the height of the feature, and W is the width of the feature.
C
fix doc  
chengduoZH 已提交
220 221
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
C
chengduoZH 已提交
222 223
The input(X) size and output(Out) size may be different.

224
Example:
F
fengjiayi 已提交
225

C
chengduoZH 已提交
226
  Input:
F
fengjiayi 已提交
227

K
kexinzhao 已提交
228
       X shape: $(N, C, H_{in}, W_{in})$
F
fengjiayi 已提交
229

C
chengduoZH 已提交
230
  Output:
F
fengjiayi 已提交
231

K
kexinzhao 已提交
232
       Out shape: $(N, C, H_{out}, W_{out})$
F
fengjiayi 已提交
233

234 235
  For ceil_mode = false:
       $$
F
fengjiayi 已提交
236
       H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1
F
fengjiayi 已提交
237 238
       $$
       $$
F
fengjiayi 已提交
239
       W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1
K
kexinzhao 已提交
240
       $$
241 242
  For ceil_mode = true:
       $$
F
fengjiayi 已提交
243
       H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1
F
fengjiayi 已提交
244 245
       $$
       $$
F
fengjiayi 已提交
246
       W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1
247
       $$
K
kexinzhao 已提交
248

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
  For exclusive = true:
       $$
       hstart = i * strides[0] - paddings[0]
       hend = hstart + ksize[0]
       wstart = j * strides[1] - paddings[1]
       wend = wstart + ksize[1]
       Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}
       $$
  For exclusive = false:
       $$
       hstart = max(0, i * strides[0] - paddings[0])
       hend = min(H, hstart + ksize[0])
       wstart = max(0, j * strides[1] - paddings[1])
       wend = min(W, wstart + ksize[1])
       Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
       $$

266
)DOC");
267 268
}

C
chengduo 已提交
269 270 271 272 273 274 275 276
class PoolOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
  }
};

Y
Yu Yang 已提交
277
void Pool3dOpMaker::Make() {
K
kexinzhao 已提交
278 279 280 281 282 283
  AddInput("X",
           "(Tensor) The input tensor of pooling operator. "
           "The format of input tensor is NCDHW, where N is batch size, C is "
           "the number of channels, and D, H and W is the depth, height and "
           "width of "
           "the feature, respectively.");
284
  AddOutput("Out",
C
chengduoZH 已提交
285
            "(Tensor) The output tensor of pooling operator."
K
kexinzhao 已提交
286 287 288
            "The format of output tensor is also NCDHW, "
            "where N is batch size, C is "
            "the number of channels, and D, H and W is the depth, height and "
289
            "width of the feature, respectively.");
290

C
chengduoZH 已提交
291
  AddAttr<std::string>("pooling_type",
K
kexinzhao 已提交
292
                       "(string) Pooling type, can be \"max\" for max-pooling "
C
chengduoZH 已提交
293
                       "and \"avg\" for average-pooling.")
294
      .InEnum({"max", "avg"});
K
kexinzhao 已提交
295 296 297 298
  AddAttr<std::vector<int>>(
      "ksize",
      "(vector<int>) The pooling window size(depth, height, "
      "width) of pooling operator. "
C
chengduoZH 已提交
299
      "If global_pooling = true, ksize and paddings will "
K
kexinzhao 已提交
300 301
      "be ignored.");  // TODO(Chengduo): Add checker.
                       // (Currently,
C
fix bug  
chengduoZH 已提交
302
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
303 304 305 306
  AddAttr<bool>(
      "global_pooling",
      "(bool, default false) Whether to use the global pooling. "
      "If global_pooling = true, ksize and paddings wille be ignored.")
307
      .SetDefault(false);
K
kexinzhao 已提交
308 309 310 311
  AddAttr<std::vector<int>>(
      "strides",
      "(vector<int>, default {1,1,1}) Strides(depth, height, "
      "width) of the pooling operator.")
312 313
      .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
314 315
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
316
      "(vector<int>, default {0,0,0}), paddings(depth, height, "
K
kexinzhao 已提交
317
      "width) of pooling operator. "
C
chengduoZH 已提交
318
      "If global_pooling = true, ksize and paddings will be ignored.")
319 320
      .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
321 322 323 324 325 326
  AddAttr<bool>(
      "exclusive",
      "(bool, default True) When true, will exclude the zero-padding in the "
      "averaging calculating, otherwise, include the zero-padding. Note, it "
      "is only used when pooling_type is avg. The defalut is True.")
      .SetDefault(true);
327

328 329 330 331
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
332 333 334
  AddAttr<bool>(
      "ceil_mode",
      "(bool, default false) Wether to use the ceil function to calculate "
W
wanghaoshuang 已提交
335 336
      "output height and width. False is the default. If it is set to False, "
      "the floor function will be used.")
337
      .SetDefault(false);
338 339 340
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
341 342 343 344 345 346 347 348 349
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function

350
  AddComment(R"DOC(
K
kexinzhao 已提交
351 352
Pool3d Operator.

C
chengduoZH 已提交
353
The pooling3d operation calculates the output based on
C
chengduoZH 已提交
354
the input, pooling_type, ksize, strides, and paddings parameters.
K
kexinzhao 已提交
355 356
Input(X) and output(Out) are in NCDHW format, where N is batch
size, C is the number of channels, and D, H and W are the depth, height and
357 358
width of the feature, respectively. Parameters(ksize, strides, paddings)
are three elements. These three elements represent depth, height and
K
kexinzhao 已提交
359
width, respectively. The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
360 361 362

Example:
  Input:
K
kexinzhao 已提交
363
       X shape: $(N, C, D_{in}, H_{in}, W_{in})$
C
chengduoZH 已提交
364
  Output:
K
kexinzhao 已提交
365
       Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
366
  For ceil_mode = false:
C
chengduoZH 已提交
367 368 369 370 371
  $$
       D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2])}{strides[2]} + 1
  $$
372 373 374 375 376 377
  For ceil_mode = true:
  $$
       D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0] + strides[0] -1)}{strides[0]} + 1 \\
       H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1] + strides[1] -1)}{strides[1]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2] + strides[2] -1)}{strides[2]} + 1
  $$
K
kexinzhao 已提交
378

379
)DOC");
380
}
381 382 383 384 385
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

Y
Yang Yang 已提交
386
REGISTER_OPERATOR(pool2d, ops::PoolOp, ops::Pool2dOpMaker,
C
chengduo 已提交
387
                  ops::PoolOpInferVarType,
388 389
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(pool2d_grad, ops::PoolOpGrad);
390

Q
QI JUN 已提交
391 392 393 394 395
REGISTER_OP_CPU_KERNEL(
    pool2d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool2d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
396
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);
397

Y
Yang Yang 已提交
398
REGISTER_OPERATOR(pool3d, ops::PoolOp, ops::Pool3dOpMaker,
C
chengduo 已提交
399
                  ops::PoolOpInferVarType,
400 401
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(pool3d_grad, ops::PoolOpGrad);
402

Q
QI JUN 已提交
403 404 405 406 407 408
REGISTER_OP_CPU_KERNEL(
    pool3d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool3d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);