proximal_gd_op.cc 3.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/optimizers/proximal_gd_op.h"
16 17 18 19

namespace paddle {
namespace operators {

D
dzhwinter 已提交
20
using Tensor = framework::Tensor;
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
class ProximalGDOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Param"),
                   "Input(Param) of ProximalGDOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Grad"),
                   "Input(Grad) of ProximalGDOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("LearningRate"),
                   "Input(LearningRate) of ProximalGDOp should not be null.");

    PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
                   "Output(ParamOut) of ProximalGDOp should not be null.");

    auto param_dim = ctx->GetInputDim("Param");
    PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("Grad"),
                      "Two input of ProximalGD Op's dimension must be same.");

    auto lr_dim = ctx->GetInputDim("LearningRate");
    PADDLE_ENFORCE_EQ(framework::product(lr_dim), 1,
                      "Learning Rate should be a scalar.");

    ctx->SetOutputDim("ParamOut", param_dim);
  }
D
dzhwinter 已提交
47 48
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
Y
Yu Yang 已提交
49 50
    return framework::OpKernelType(ctx.Input<Tensor>("Param")->type(),
                                   ctx.GetPlace());
D
dzhwinter 已提交
51
  }
52 53 54 55
};

class ProximalGDOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
56
  void Make() override {
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    AddInput("Param",
             "(Tensor, default Tensor<float>) "
             "Input parameter value that has to be updated.");
    AddInput("Grad",
             "(Tensor, default Tensor<float>) "
             "Input gradient of the parameter.");
    AddInput("LearningRate",
             "(Tensor, default Tensor<float>) "
             "The learning rate should be a tensor of size 1.");

    AddOutput("ParamOut", "(Tensor) Output updated parameter value.");

    AddAttr<float>("l1",
                   "(float, default 0.0) "
                   "L1 regularization strength.")
        .SetDefault(0.0f);
    AddAttr<float>("l2",
K
kexinzhao 已提交
74
                   "(float, default 0.0) "
75 76 77
                   "L2 regularization strength.")
        .SetDefault(0.0f);
    AddComment(R"DOC(
K
kexinzhao 已提交
78
ProximalGD Operator.
79

K
kexinzhao 已提交
80
Optimizer that implements the proximal gradient descent algorithm:
81

K
kexinzhao 已提交
82 83 84 85 86
$$
prox\_param = param - learning\_rate * grad \\
param = sign(prox\_param) / (1 + learning\_rate * l2) *
        \max(|prox\_param| - learning\_rate * l1, 0)
$$        
87 88 89

The paper that proposed Proximal Gradient Descent:
(http://papers.nips.cc/paper/3793-efficient-learning-using-forward-backward-splitting.pdf)
K
kexinzhao 已提交
90

91 92 93 94 95 96 97 98 99 100
)DOC");
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(proximal_gd, ops::ProximalGDOp,
                             ops::ProximalGDOpMaker);
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
101 102
    proximal_gd,
    ops::ProximalGDOpKernel<paddle::platform::CPUDeviceContext, float>);