recurrent_op.cc 27.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yan Chunwei 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yan Chunwei 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yan Chunwei 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yan Chunwei 已提交
14

Y
Yu Yang 已提交
15
#include <vector>
Y
Yi Wang 已提交
16 17
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/op_registry.h"
Y
Yan Chunwei 已提交
18 19 20

namespace paddle {
namespace operators {
Y
Yu Yang 已提交
21 22 23 24 25
constexpr char kInputs[] = "inputs";
constexpr char kInitialStates[] = "initial_states";
constexpr char kParameters[] = "parameters";
constexpr char kOutputs[] = "outputs";
constexpr char kStepScopes[] = "step_scopes";
C
chengduo 已提交
26
constexpr char kHasStates[] = "has_states";
Y
Yu Yang 已提交
27 28
constexpr char kExStates[] = "ex_states";
constexpr char kStates[] = "states";
29
constexpr char kStepBlock[] = "sub_block";
Y
Yu Yang 已提交
30 31 32 33 34 35 36
constexpr char kReverse[] = "reverse";
constexpr char kIsTrain[] = "is_train";
#define GRAD_SUFFIX "@GRAD"
constexpr char kInputGrads[] = "inputs" GRAD_SUFFIX;
constexpr char kOutputGrads[] = "outputs" GRAD_SUFFIX;
constexpr char kParamGrads[] = "parameters" GRAD_SUFFIX;
constexpr char kInitStateGrads[] = "initial_states" GRAD_SUFFIX;
Y
Yan Chunwei 已提交
37

Y
Yu Yang 已提交
38 39
using StepScopeVar = std::vector<framework::Scope *>;

40 41 42 43 44 45 46 47 48 49 50 51 52 53
static void ClearStepScopes(const platform::DeviceContext &dev_ctx,
                            framework::Scope *parent_scope,
                            StepScopeVar *step_scopes) {
  if (step_scopes->empty()) return;

  dev_ctx.Wait();

  for (auto *sub_scope : *step_scopes) {
    parent_scope->DeleteScope(sub_scope);
  }

  step_scopes->clear();
}

Y
Yu Yang 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
// StepScopes manages scopes inside RNN.
//    StepScopes::CurScope() get the current scope
//    StepScopes::ExScope() get the ex-scope, or scope in previous time step.
//    StepScopes::Next() move to next time step.
//
// if is_train = False, then
//   there are two scopes for the RNN and just support forward.
// else
//   the len(scopes) == seq_len
//
// if is_backward = True, then
//   reversely access scopes
// else
//   access scopes from begin to end.
class StepScopes {
 public:
70 71
  StepScopes(const platform::DeviceContext &dev_ctx,
             const framework::Scope &parent, StepScopeVar *scopes,
Y
Yu Yang 已提交
72 73 74 75 76 77 78 79 80
             bool is_train, size_t seq_len, bool is_backward = false)
      : counter_(is_backward ? seq_len - 1 : 0UL),
        scopes_(scopes),
        is_train_(is_train),
        is_backward_(is_backward) {
    size_t num_step_scopes = is_train ? seq_len : 2;
    PADDLE_ENFORCE(is_train || !is_backward,
                   "Cannot backward when is not training");
    if (!is_backward_) {
81
      ClearStepScopes(dev_ctx, const_cast<framework::Scope *>(&parent), scopes);
Y
Yu Yang 已提交
82 83 84 85
      scopes->reserve(static_cast<size_t>(num_step_scopes));
      for (size_t i = 0; i < num_step_scopes; ++i) {
        scopes->emplace_back(&parent.NewScope());
      }
Y
Yan Chunwei 已提交
86
    }
Y
Yu Yang 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
  }

  framework::Scope &CurScope() { return GetScope(counter_); }

  framework::Scope &ExScope() {
    auto &scope = GetScope(is_backward_ ? counter_ + 1 : counter_ - 1);
    return scope;
  }

  void Next() {
    if (is_backward_) {
      --counter_;
    } else {
      ++counter_;
    }
  }

 private:
  framework::Scope &GetScope(size_t scope_id) const {
    if (!is_train_) {
      scope_id %= 2;
    }
    PADDLE_ENFORCE_LT(scope_id, scopes_->size());
    return *(*scopes_)[scope_id];
  }

  size_t counter_;
  StepScopeVar *scopes_;
  bool is_train_;
  bool is_backward_;
};

// Base class for RecurrentOp/RecurrentGradOp
//    Some common protected functions for RecurrentOp/RecurrentGradOp
class RecurrentBase : public framework::OperatorBase {
 public:
  RecurrentBase(const std::string &type,
                const framework::VariableNameMap &inputs,
                const framework::VariableNameMap &outputs,
                const framework::AttributeMap &attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}

 protected:
  // Get SequenceLength from Scope
  //   The sequence length is got from input tensor. The input tensor's
  //   dimension should be [SEQ_LEN, ..., ...]. The first of the tensor's shape
  //   is SEQ_LEN. The second of the tensor's shape could be the batch size or
  //   nested sequence length.
  int64_t GetSequenceLength(const framework::Scope &scope) const {
    // Dim format SEQ_LEN, BATCH_SIZE, ...
    int64_t seq_len = -1;
    auto &all_inputs = Inputs(kInputs);
    PADDLE_ENFORCE(!all_inputs.empty());
    for (auto &iname : all_inputs) {
      auto *var = scope.FindVar(iname);
      PADDLE_ENFORCE(var != nullptr);
      PADDLE_ENFORCE(var->IsType<framework::LoDTensor>());
      auto &dim = var->Get<framework::LoDTensor>().dims();
      if (seq_len == -1) {
        seq_len = dim[0];
      } else {
        PADDLE_ENFORCE_EQ(seq_len, dim[0]);
      }
    }
    return seq_len;
  }

  // for src_tensor, dst_tensor in zip(map(src_scope.FindVar, src_vars),
  //                                   map(dst_scope.Var, dst_vars)):
  //   dst_tensor.ShareDataWith(src_tensor)
  static void LinkTensor(const framework::Scope &src_scope,
                         const std::vector<std::string> &src_vars,
                         framework::Scope *dst_scope,
                         const std::vector<std::string> &dst_vars) {
    LinkTensorWithCallback(
        src_scope, src_vars, dst_scope, dst_vars,
        [&](const framework::Tensor &src, framework::Tensor *dst) {
          dst->ShareDataWith(src);
        });
  }

  // for src_tensor, dst_tensor in zip(map(src_scope.FindVar, src_vars),
  //                                   map(dst_scope.Var, dst_vars)):
  //   callback(src_tensor, &dst_tensor)
  template <typename Callback>
  static void LinkTensorWithCallback(const framework::Scope &src_scope,
                                     const std::vector<std::string> &src_vars,
                                     framework::Scope *dst_scope,
                                     const std::vector<std::string> &dst_vars,
C
chengduo 已提交
176 177
                                     Callback callback,
                                     bool is_backward = false) {
Y
Yu Yang 已提交
178 179
    PADDLE_ENFORCE_EQ(src_vars.size(), dst_vars.size());
    for (size_t i = 0; i < dst_vars.size(); ++i) {
M
minqiyang 已提交
180
      VLOG(10) << "Link " << src_vars[i] << " to " << dst_vars[i];
C
chengduo 已提交
181 182
      AccessTensor(src_scope, src_vars[i], dst_scope, dst_vars[i], callback,
                   is_backward);
Y
Yu Yang 已提交
183 184 185 186 187 188 189 190 191 192 193
    }
  }

  // for src_tensor, dst_tensor in zip(map(src_scope.FindVar, src_vars),
  //                                   map(dst_scope.FindVar, dst_vars)):
  //   callback(src_tensor, &dst_tensor)
  template <typename Callback>
  static void LinkTensorWithCallback(const framework::Scope &src_scope,
                                     const std::vector<std::string> &src_vars,
                                     const framework::Scope &dst_scope,
                                     const std::vector<std::string> &dst_vars,
C
chengduo 已提交
194 195
                                     Callback callback,
                                     bool is_backward = false) {
Y
Yu Yang 已提交
196 197
    PADDLE_ENFORCE_EQ(src_vars.size(), dst_vars.size());
    for (size_t i = 0; i < dst_vars.size(); ++i) {
M
minqiyang 已提交
198
      VLOG(10) << "Link " << src_vars[i] << " to " << dst_vars[i];
C
chengduo 已提交
199 200
      AccessTensor(src_scope, src_vars[i], dst_scope, dst_vars[i], callback,
                   is_backward);
Y
Yu Yang 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
    }
  }

  // (seq_len, shape) -> return [seq_len] + list(shape)
  static framework::DDim PrependDims(size_t seq_len,
                                     const framework::DDim &src) {
    auto dims = framework::vectorize(src);
    dims.insert(dims.begin(), static_cast<int64_t>(seq_len));
    return framework::make_ddim(dims);
  }

 private:
  template <typename Callback>
  static void AccessTensor(const framework::Scope &src_scope,
                           const std::string &src_var_name,
                           framework::Scope *dst_scope,
C
chengduo 已提交
217 218
                           const std::string &dst_var_name, Callback callback,
                           bool is_backward = false) {
Y
Yu Yang 已提交
219
    auto *src_var = src_scope.FindVar(src_var_name);
C
chengduo 已提交
220 221 222 223
    if (is_backward && src_var == nullptr) {
      return;
    }
    PADDLE_ENFORCE(src_var != nullptr, "%s is not found.", src_var_name);
Y
Yu Yang 已提交
224 225 226 227 228 229 230 231 232 233 234
    auto &src_tensor = src_var->Get<framework::LoDTensor>();

    auto *dst_var = dst_scope->Var(dst_var_name);
    auto *dst_tensor = dst_var->GetMutable<framework::LoDTensor>();
    callback(src_tensor, dst_tensor);
  }

  template <typename Callback>
  static void AccessTensor(const framework::Scope &src_scope,
                           const std::string &src_var_name,
                           const framework::Scope &dst_scope,
C
chengduo 已提交
235 236 237 238 239 240
                           const std::string &dst_var_name, Callback callback,
                           bool is_backward = false) {
    auto *dst_var = dst_scope.FindVar(dst_var_name);
    if (is_backward && dst_var == nullptr) {
      return;
    }
Y
Yu Yang 已提交
241
    auto *src_var = src_scope.FindVar(src_var_name);
C
chengduo 已提交
242
    PADDLE_ENFORCE(src_var != nullptr, "%s is not found.", src_var_name);
Y
Yu Yang 已提交
243
    auto &src_tensor = src_var->Get<framework::LoDTensor>();
C
chengduo 已提交
244
    PADDLE_ENFORCE(dst_var != nullptr, "%s is not found.", dst_var_name);
Y
Yu Yang 已提交
245 246 247 248 249 250 251 252 253 254 255 256
    auto *dst_tensor = dst_var->GetMutable<framework::LoDTensor>();
    callback(src_tensor, dst_tensor);
  }
};

class RecurrentOp : public RecurrentBase {
 public:
  RecurrentOp(const std::string &type, const framework::VariableNameMap &inputs,
              const framework::VariableNameMap &outputs,
              const framework::AttributeMap &attrs)
      : RecurrentBase(type, inputs, outputs, attrs) {}

257 258 259
 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &place) const override {
C
chengduo 已提交
260
    bool has_state = Attr<bool>(kHasStates);
Y
Yu Yang 已提交
261 262
    auto seq_len = static_cast<size_t>(this->GetSequenceLength(scope));

C
chengduo 已提交
263 264 265 266
    // get device context from pool
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(place);

267 268 269 270
    VLOG(3) << "Static RNN input sequence length = " << seq_len;
    StepScopes scopes = CreateStepScopes(dev_ctx, scope, seq_len);
    auto reverse = Attr<bool>(kReverse);

D
dzhwinter 已提交
271
    framework::Executor executor(place);
Y
Yu Yang 已提交
272
    auto *block = Attr<framework::BlockDesc *>(kStepBlock);
D
dzhwinter 已提交
273

Y
Yu Yang 已提交
274 275 276 277
    auto *program = block->Program();

    for (size_t i = 0; i < seq_len; ++i) {
      size_t seq_offset = reverse ? seq_len - i - 1 : i;
M
minqiyang 已提交
278
      VLOG(3) << "Recurrent operate at the time step " << seq_offset;
Y
Yu Yang 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293

      auto &cur_scope = scopes.CurScope();

      // Link outside::input --> inside::input
      //   inside::input = outside::input[seq_offset: seq_offset+1]
      LinkTensorWithCallback(
          scope, Inputs(kInputs), &cur_scope, Inputs(kInputs),
          [&seq_offset](const framework::Tensor &outside,
                        framework::Tensor *inside) {
            inside->ShareDataWith(outside.Slice(seq_offset, seq_offset + 1));
            auto dims = framework::vectorize(inside->dims());
            dims.erase(dims.begin());
            inside->Resize(framework::make_ddim(dims));
          });

C
chengduo 已提交
294 295 296 297 298 299 300 301 302 303 304
      if (has_state) {
        if (i == 0) {
          // Link initial states  --> ex_states
          LinkTensor(scope, Inputs(kInitialStates), &cur_scope,
                     Attr<std::vector<std::string>>(kExStates));
        } else {
          auto &ex_scope = scopes.ExScope();
          // Link ex_scope::state --> cur_scope::ex_state
          LinkTensor(ex_scope, Attr<std::vector<std::string>>(kStates),
                     &cur_scope, Attr<std::vector<std::string>>(kExStates));
        }
Y
Yu Yang 已提交
305 306 307 308
      }

      // Every inputs are linked now, execute!
      executor.Run(*program, &cur_scope, block->ID(),
S
sneaxiy 已提交
309 310 311
                   false /*create_local_scope*/, true /*create_vars*/,
                   std::vector<std::string>() /*skip_ref_cnt_vars*/,
                   true /*force_disable_gc*/);
Y
Yu Yang 已提交
312 313 314 315 316 317 318 319 320

      // Copy inside::output -> outside::output
      //    outside::output[seq_offset: seq_offset + 1] = inside::output
      this->LinkTensorWithCallback(
          cur_scope, Outputs(kOutputs), scope, Outputs(kOutputs),
          [&](const framework::LoDTensor &src_tensor,
              framework::LoDTensor *dst_tensor) {
            if (i == 0) {  // create output tensor at begin
              dst_tensor->Resize(PrependDims(seq_len, src_tensor.dims()));
D
dzhwinter 已提交
321
              dst_tensor->mutable_data(place, src_tensor.type());
Y
Yu Yang 已提交
322 323 324 325 326
            }

            auto dst_out = dst_tensor->Slice(seq_offset, seq_offset + 1);
            // Explicit copy output since the local RNN scope can be destroyed
            // early.
Y
Yi Wang 已提交
327
            framework::TensorCopy(src_tensor, place, dev_ctx, &dst_out);
Y
Yu Yang 已提交
328 329 330 331 332 333 334
          });

      scopes.Next();
    }
  }

 private:
335 336
  StepScopes CreateStepScopes(const platform::DeviceContext &dev_ctx,
                              const framework::Scope &scope,
Y
Yu Yang 已提交
337 338 339
                              size_t seq_len) const {
    auto *var = scope.FindVar(Output(kStepScopes));
    PADDLE_ENFORCE(var != nullptr);
340
    return StepScopes(dev_ctx, scope, var->GetMutable<StepScopeVar>(),
Y
Yu Yang 已提交
341 342 343 344 345 346 347 348 349 350 351 352
                      Attr<bool>(kIsTrain), seq_len);
  }
};

class RecurrentGradOp : public RecurrentBase {
 public:
  RecurrentGradOp(const std::string &type,
                  const framework::VariableNameMap &inputs,
                  const framework::VariableNameMap &outputs,
                  const framework::AttributeMap &attrs)
      : RecurrentBase(type, inputs, outputs, attrs) {}

353 354 355
 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &place) const override {
C
chengduo 已提交
356 357
    bool has_state = Attr<bool>(kHasStates);
    const size_t seq_len = static_cast<size_t>(GetSequenceLength(scope));
358 359 360 361 362 363

    // get device context from pool
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(place);

    StepScopes scopes = CreateStepScopes(dev_ctx, scope, seq_len);
Y
Yu Yang 已提交
364 365
    auto reverse = Attr<bool>(kReverse);

D
dzhwinter 已提交
366
    framework::Executor executor(place);
Y
Yu Yang 已提交
367
    auto *block = Attr<framework::BlockDesc *>(kStepBlock);
Y
Yu Yang 已提交
368 369 370 371
    auto *program = block->Program();

    for (size_t step_id = 0; step_id < seq_len; ++step_id) {
      size_t seq_offset = reverse ? step_id : seq_len - step_id - 1;
M
minqiyang 已提交
372
      VLOG(3) << "Recurrent backward operate at the time step " << seq_offset;
Y
Yu Yang 已提交
373
      auto &cur_scope = scopes.CurScope();
C
chengduo 已提交
374

Y
Yu Yang 已提交
375 376 377 378 379 380 381 382 383
      // Link outside::output_grads --> inside::output_grads
      //   inside::output_grad = outside::output_grad[seq_offset:seq_offset+1]
      LinkTensorWithCallback(
          scope, Inputs(kOutputGrads), &cur_scope, Inputs(kOutputGrads),
          [&](const framework::Tensor &outside, framework::Tensor *inside) {
            inside->ShareDataWith(outside.Slice(seq_offset, seq_offset + 1));
            auto dims = framework::vectorize(inside->dims());
            dims.erase(dims.begin());
            inside->Resize(framework::make_ddim(dims));
C
chengduo 已提交
384 385
          },
          true /*is_backward*/);
Y
Yu Yang 已提交
386 387
      auto og_set = List2Set(Inputs(kOutputGrads));

M
minqiyang 已提交
388
      if (VLOG_IS_ON(10)) {
Y
Yu Yang 已提交
389 390 391
        std::ostringstream sout;
        std::copy(og_set.begin(), og_set.end(),
                  std::ostream_iterator<std::string>(sout, ","));
M
minqiyang 已提交
392
        VLOG(10) << " RNN output gradients = [" << sout.str() << "]";
Y
Yu Yang 已提交
393 394
      }

C
chengduo 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
      if (has_state) {
        // Link states
        //   if cur_scope::cur_state_grad in out_grads:
        //     cur_scope::cur_state_grad += ex_scope::ex_state_grad
        //   else:
        //     ex_scope::ex_state_grad --> cur_scope::cur_state_grad
        if (step_id != 0) {  // not at beginning
          auto &ex_scope = scopes.ExScope();
          auto ex_state_grads =
              GradVarLists(Attr<std::vector<std::string>>(kExStates));
          auto cur_state_grads =
              GradVarLists(Attr<std::vector<std::string>>(kStates));

          PADDLE_ENFORCE_EQ(ex_state_grads.size(), cur_state_grads.size());
          for (size_t i = 0; i < ex_state_grads.size(); ++i) {
            auto &cur_grad = cur_state_grads[i];
            auto &ex_grad = ex_state_grads[i];
            auto &ex_tensor =
                ex_scope.FindVar(ex_grad)->Get<framework::LoDTensor>();

            VLOG(10) << " RNN link " << cur_grad << " from " << ex_grad;
            auto *cur_grad_var = cur_scope.Var(cur_grad);
            auto cur_grad_tensor =
                cur_grad_var->GetMutable<framework::LoDTensor>();
            framework::TensorCopy(ex_tensor, place, dev_ctx, cur_grad_tensor);
          }
Y
Yu Yang 已提交
421
        }
Y
Yan Chunwei 已提交
422
      }
Y
Yu Yang 已提交
423

M
minqiyang 已提交
424
      VLOG(5) << "Recurrent memory linking finished ";
Y
Yu Yang 已提交
425 426
      // Run step block with cur_scope
      executor.Run(*program, &cur_scope, block->ID(),
S
sneaxiy 已提交
427 428 429
                   false /*create_local_scope*/, true /*create_vars*/,
                   std::vector<std::string>() /*skip_ref_cnt_vars*/,
                   true /*force_disable_gc*/);
Y
Yu Yang 已提交
430

M
minqiyang 已提交
431
      VLOG(5) << "executor.Run finished ";
Y
Yu Yang 已提交
432 433 434 435 436 437 438 439 440 441 442 443

      auto local_var_names = LocalVarNames(cur_scope);

      // Accumulate params
      //   if (step == 0):
      //      outside::param_grad = 0.0
      //   outside::param_grad += inside::param_grad
      {
        auto &pg_names = Outputs(kParamGrads);
        auto &p_names = Inputs(kParameters);
        PADDLE_ENFORCE_EQ(pg_names.size(), p_names.size());

Y
Yu Yang 已提交
444 445
        for (size_t param_id = 0; param_id < pg_names.size(); ++param_id) {
          auto inside_grad_name = framework::GradVarName(p_names[param_id]);
Y
Yu Yang 已提交
446 447 448 449 450 451 452 453 454 455 456 457

          // If does not compute gradient of that variable inside rnn, just
          // continue
          if (local_var_names.find(inside_grad_name) == local_var_names.end()) {
            continue;
          }

          // zero gradient variable in step 0
          if (step_id == 0) {
            auto &inside_tensor = cur_scope.FindVar(inside_grad_name)
                                      ->Get<framework::LoDTensor>();
            framework::AttributeMap attrs;
Y
Yu Yang 已提交
458
            attrs["dtype"] = inside_tensor.type();
Y
Yu Yang 已提交
459 460 461 462
            attrs["shape"] = framework::vectorize2int(inside_tensor.dims());
            attrs["value"] = 0.0f;

            auto zero_op = framework::OpRegistry::CreateOp(
Y
Yiqun Liu 已提交
463 464
                "fill_constant", framework::VariableNameMap{},
                {{"Out", {pg_names[param_id]}}}, attrs);
D
dzhwinter 已提交
465
            zero_op->Run(scope, place);
Y
Yu Yang 已提交
466 467
          }

Y
Yu Yang 已提交
468
          auto new_inside_name = cur_scope.Rename(inside_grad_name);
Y
Yu Yang 已提交
469

C
chengduo 已提交
470
          // sum gradient
Y
Yu Yang 已提交
471
          auto sum_op = framework::OpRegistry::CreateOp(
Y
Yu Yang 已提交
472
              "sum", {{"X", {pg_names[param_id], new_inside_name}}},
473 474
              {{"Out", {pg_names[param_id]}}},
              framework::AttributeMap{{"use_mkldnn", {false}}});
D
dzhwinter 已提交
475
          sum_op->Run(cur_scope, place);
Y
Yu Yang 已提交
476 477

          cur_scope.Rename(new_inside_name, inside_grad_name);
Y
Yu Yang 已提交
478
        }
Y
Yan Chunwei 已提交
479
      }
M
minqiyang 已提交
480
      VLOG(5) << "Accumulate Parameter finished ";
Y
Yu Yang 已提交
481 482 483 484 485 486 487 488 489 490 491 492

      // Copy input gradient from inside to outside
      //   outside::input_grad[seq_offset: seq_offset + 1] = inside::input_grad
      LinkTensorWithCallback(
          cur_scope, GradVarLists(Inputs(kInputs)), scope, Outputs(kInputGrads),
          [&](const framework::LoDTensor &inside,
              framework::LoDTensor *outside) {
            if (inside.memory_size() == 0) {  // IG is not created.
              return;
            }
            if (step_id == 0) {  // alloc memory
              outside->Resize(PrependDims(seq_len, inside.dims()));
D
dzhwinter 已提交
493
              outside->mutable_data(place, inside.type());
Y
Yu Yang 已提交
494 495 496
            }

            auto dst = outside->Slice(seq_offset, seq_offset + 1);
Y
Yi Wang 已提交
497
            framework::TensorCopy(inside, place, dev_ctx, &dst);
C
chengduo 已提交
498 499
          },
          true /*is_backward*/);
M
minqiyang 已提交
500
      VLOG(5) << "Link outside gradient finished ";
Y
Yu Yang 已提交
501

C
chengduo 已提交
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
      if (has_state) {
        if (step_id + 1 == seq_len) {  // at_end
          // copy initialize states gradient from inside to outside
          LinkTensorWithCallback(
              cur_scope,
              GradVarLists(Attr<std::vector<std::string>>(kExStates)), scope,
              Outputs(kInitStateGrads),
              [&](const framework::LoDTensor &inside,
                  framework::LoDTensor *outside) {
                outside->Resize(inside.dims());
                outside->mutable_data(place, inside.type());
                framework::TensorCopy(inside, place, dev_ctx, outside);
              },
              true /*is_backward*/);
          VLOG(5) << "Link initialize state gradient finished ";
        }
Y
Yu Yang 已提交
518 519
      }
      scopes.Next();
Y
Yan Chunwei 已提交
520
    }
C
chengduo 已提交
521 522 523
    // Delete the scope of StepScopes
    auto *var = scope.FindVar(Input(kStepScopes));
    PADDLE_ENFORCE(var != nullptr);
524 525 526
    auto *step_scopes = var->GetMutable<StepScopeVar>();
    ClearStepScopes(dev_ctx, const_cast<framework::Scope *>(&scope),
                    step_scopes);
Y
Yan Chunwei 已提交
527
  }
Y
Yu Yang 已提交
528 529

 private:
530 531
  StepScopes CreateStepScopes(const platform::DeviceContext &dev_ctx,
                              const framework::Scope &scope,
Y
Yu Yang 已提交
532 533 534
                              size_t seq_len) const {
    auto *var = scope.FindVar(Input(kStepScopes));
    PADDLE_ENFORCE(var != nullptr);
535
    return StepScopes(dev_ctx, scope, var->GetMutable<StepScopeVar>(),
Y
Yu Yang 已提交
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
                      Attr<bool>(kIsTrain), seq_len, true /*is_backward*/);
  }

  std::unordered_set<std::string> List2Set(
      const std::vector<std::string> &list) const {
    std::unordered_set<std::string> local_var_name_set;
    local_var_name_set.reserve(list.size());
    for (auto &each : list) {
      local_var_name_set.insert(each);
    }
    return local_var_name_set;
  }

  std::unordered_set<std::string> LocalVarNames(
      const framework::Scope &scope) const {
Y
Yang Yu 已提交
551
    return this->List2Set(scope.LocalVarNames());
Y
Yu Yang 已提交
552 553 554 555 556 557 558 559 560 561 562 563
  }
  static std::vector<std::string> GradVarLists(
      const std::vector<std::string> &var_names) {
    std::vector<std::string> retv;
    retv.reserve(var_names.size());
    std::transform(var_names.begin(), var_names.end(), std::back_inserter(retv),
                   framework::GradVarName);
    return retv;
  }
};

class RecurrentOpProtoMaker : public framework::OpProtoAndCheckerMaker {
564
 public:
Y
Yu Yang 已提交
565
  void Make() override {
Y
Yu Yang 已提交
566 567 568 569
    AddInput(kInputs, "rnn inputs").AsDuplicable();
    AddInput(kInitialStates, "rnn initial states").AsDuplicable();
    AddInput(kParameters,
             "Parameters are used by step block as its input. However, the "
K
kexinzhao 已提交
570 571
             "input is not a sequence tensor. Every time step, each operator "
             "in step block just use the parameter directly.")
Y
Yu Yang 已提交
572
        .AsDuplicable();
Y
Yu Yang 已提交
573
    AddOutput(kOutputs,
K
kexinzhao 已提交
574
              "The output sequence of RNN. The sequence length must be same.")
Y
Yu Yang 已提交
575
        .AsDuplicable();
Y
Yu Yang 已提交
576
    AddOutput(kStepScopes,
K
kexinzhao 已提交
577
              "StepScopes contain all local variables in each time step.");
C
chengduo 已提交
578
    AddAttr<bool>(kHasStates, "Whether has states.").SetDefault(false);
Y
Yu Yang 已提交
579 580 581 582 583 584 585 586 587 588 589
    AddAttr<std::vector<std::string>>(kExStates,
                                      string::Sprintf(
                                          R"DOC(The ex-state variable names.
The ex-state means the state value in the ex-timestep or the previous time step
[%s, %s, %s] must be the same order)DOC",
                                          kExStates, kStates, kInitStateGrads));
    AddAttr<std::vector<std::string>>(
        kStates,
        string::Sprintf(
            "The state variable names. [%s, %s, %s] must be the same order",
            kExStates, kStates, kInitStateGrads));
Y
Yu Yang 已提交
590
    AddAttr<framework::BlockDesc *>(kStepBlock, "The step block inside RNN");
Y
Yu Yang 已提交
591 592
    AddAttr<bool>(kReverse, R"DOC(Calculate RNN reversely or not.
By default reverse=False
Y
Yan Chunwei 已提交
593

Y
Yu Yang 已提交
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
Assume the input data is [A, B, C, D]

if reverse is False:
  the computation of RNN is like
      A          B          C         D
      |          |          |         |
      v          v          v         v
     rnn -----> rnn -----> rnn ----> rnn
      |          |          |         |
      v          v          v         v
      o          o          o         o

if reverse is True
  the computation of RNN is like
      A          B          C         D
      |          |          |         |
      v          v          v         v
     rnn <----- rnn <----- rnn <---- rnn
      |          |          |         |
      v          v          v         v
      o          o          o         o
)DOC").SetDefault(false);
    AddAttr<bool>(kIsTrain, "").SetDefault(true);
K
kexinzhao 已提交
617 618 619 620 621
    AddComment(R"DOC(
Static Length Recurrent Operator.

The static length recurrent operator can only operate on fixed size sequence
data, i.e. in each mini-batch, the sequence length of all inputs are the same.
Y
Yu Yang 已提交
622 623 624 625 626 627 628 629

)DOC");
  }
};

class RecurrentGradOpDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
Y
Yan Chunwei 已提交
630

Y
Yu Yang 已提交
631
 protected:
Y
Yu Yang 已提交
632 633
  virtual std::unique_ptr<framework::OpDesc> Apply() const {
    auto *grad = new framework::OpDesc();
Y
Yu Yang 已提交
634 635 636 637
    grad->SetType("recurrent_grad");
    for (auto &input_param : this->InputNames()) {
      grad->SetInput(input_param, this->Input(input_param));
      grad->SetOutput(framework::GradVarName(input_param),
638
                      this->InputGrad(input_param, false));
Y
Yu Yang 已提交
639 640 641 642 643 644 645 646 647 648 649 650 651 652
    }

    for (auto &output_param : this->OutputNames()) {
      if (output_param == kStepScopes) {
        grad->SetInput(output_param, this->Output(output_param));
        grad->SetInput(framework::GradVarName(output_param),
                       this->Output(output_param));
      } else {
        grad->SetInput(output_param, this->Output(output_param));
        grad->SetInput(framework::GradVarName(output_param),
                       this->OutputGrad(output_param));
      }
    }
    grad->SetAttrMap(this->Attrs());
A
Abhinav Arora 已提交
653
    grad->SetBlockAttr(kStepBlock, grad_block_[0]);
Y
Yan Chunwei 已提交
654

Y
Yu Yang 已提交
655
    return std::unique_ptr<framework::OpDesc>(grad);
Y
Yan Chunwei 已提交
656 657 658
  }
};

Y
Yu Yang 已提交
659 660 661 662
class RecurrentGradOpShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *ctx) const override {
    std::vector<std::string> output{kOutputs};
C
chengduo 已提交
663 664 665 666 667 668 669 670 671 672

    // In some case the kInitialStates is empty.
    // If the kInitialStates is empty, all the states should be empty.
    if (!ctx->HasInputs(kInitialStates)) {
      PADDLE_ENFORCE_EQ(
          ctx->Attrs().Get<std::vector<std::string>>(kExStates).size(), 0,
          "The Attr(%s) should be empty.", kExStates);
      PADDLE_ENFORCE_EQ(
          ctx->Attrs().Get<std::vector<std::string>>(kStates).size(), 0,
          "The Attr(%s) should be empty.", kStates);
Y
Yu Yang 已提交
673
    }
C
chengduo 已提交
674 675 676 677 678 679 680 681 682 683 684 685 686

    PADDLE_ENFORCE(ctx->HasInputs(kInputs),
                   "The input(%s) should not be empty.", kInputs);
    PADDLE_ENFORCE(ctx->HasInputs(kOutputs),
                   "The input(%s) should not be empty.", kOutputs);

    // In some case the kInitialStates is empty.
    if (ctx->HasInputs(kInitialStates)) {
      PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName(kInitialStates)),
                     "The output of(%s) should not be empty.",
                     framework::GradVarName(kInitialStates));
      ctx->SetOutputsDim(framework::GradVarName(kInitialStates),
                         ctx->GetInputsDim(kInitialStates));
Y
Yan Chunwei 已提交
687
    }
C
chengduo 已提交
688 689 690 691 692 693 694 695

    PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName(kInputs)),
                   "The output of(%s) should not be empty.",
                   framework::GradVarName(kInputs));
    ctx->SetOutputsDim(framework::GradVarName(kInputs),
                       ctx->GetInputsDim(kInputs));

    // In some case the kParameters is empty.
Y
Yu Yang 已提交
696
    if (ctx->HasInputs(kParameters)) {
C
chengduo 已提交
697 698 699
      PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName(kParameters)),
                     "The output of(%s) should not be empty.",
                     framework::GradVarName(kParameters));
Y
Yu Yang 已提交
700 701 702 703 704
      ctx->SetOutputsDim(framework::GradVarName(kParameters),
                         ctx->GetInputsDim(kParameters));
    }
  }
};
Y
Yan Chunwei 已提交
705 706 707 708

}  // namespace operators
}  // namespace paddle

Y
Yu Yang 已提交
709 710 711 712 713
REGISTER_OPERATOR(recurrent, paddle::operators::RecurrentOp,
                  paddle::operators::RecurrentOpProtoMaker,
                  paddle::operators::RecurrentGradOpDescMaker);
REGISTER_OPERATOR(recurrent_grad, paddle::operators::RecurrentGradOp,
                  paddle::operators::RecurrentGradOpShapeInference);