wmt16.py 13.1 KB
Newer Older
Y
ying 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
ACL2016 Multimodal Machine Translation. Please see this websit for more details:
http://www.statmt.org/wmt16/multimodal-task.html#task1

If you use the dataset created for your task, please cite the following paper:
Multi30K: Multilingual English-German Image Descriptions.

@article{elliott-EtAl:2016:VL16,
 author    = {{Elliott}, D. and {Frank}, S. and {Sima"an}, K. and {Specia}, L.},
 title     = {Multi30K: Multilingual English-German Image Descriptions},
 booktitle = {Proceedings of the 6th Workshop on Vision and Language},
 year      = {2016},
 pages     = {70--74},
 year      = 2016
}
"""

import os
import tarfile
import gzip
from collections import defaultdict

import paddle.v2.dataset.common

__all__ = [
    "train",
    "test",
    "validation",
    "convert",
    "fetch",
    "get_dict",
]

DATA_URL = ("http://cloud.dlnel.org/filepub/"
            "?uuid=46a0808e-ddd8-427c-bacd-0dbc6d045fed")
DATA_MD5 = "0c38be43600334966403524a40dcd81e"

TOTAL_EN_WORDS = 11250
TOTAL_DE_WORDS = 19220

START_MARK = "<s>"
END_MARK = "<e>"
UNK_MARK = "<unk>"


def __build_dict__(tar_file, dict_size, save_path, lang):
    word_dict = defaultdict(int)
    with tarfile.open(tar_file, mode="r") as f:
        for line in f.extractfile("wmt16/train"):
            line_split = line.strip().split("\t")
            if len(line_split) != 2: continue
            sen = line_split[0] if lang == "en" else line_split[1]
            for w in sen.split():
                word_dict[w] += 1

    with open(save_path, "w") as fout:
        fout.write("%s\n%s\n%s\n" % (START_MARK, END_MARK, UNK_MARK))
        for idx, word in enumerate(
                sorted(
                    word_dict.iteritems(), key=lambda x: x[1], reverse=True)):
            if idx + 3 == dict_size: break
            fout.write("%s\n" % (word[0]))


def __load_dict__(tar_file, dict_size, lang, reverse=False):
    dict_path = os.path.join(paddle.v2.dataset.common.DATA_HOME,
                             "wmt16/%s_%d.dict" % (lang, dict_size))
    if not os.path.exists(dict_path) or (
            len(open(dict_path, "r").readlines()) != dict_size):
        __build_dict__(tar_file, dict_size, dict_path, lang)

    word_dict = {}
    with open(dict_path, "r") as fdict:
        for idx, line in enumerate(fdict):
            if reverse:
                word_dict[idx] = line.strip()
            else:
                word_dict[line.strip()] = idx
    return word_dict


def __get_dict_size__(src_dict_size, trg_dict_size, src_lang):
    src_dict_size = min(src_dict_size, (TOTAL_EN_WORDS if src_lang == "en" else
                                        TOTAL_DE_WORDS))
    trg_dict_size = min(trg_dict_size, (TOTAL_DE_WORDS if src_lang == "en" else
                                        TOTAL_ENG_WORDS))
    return src_dict_size, trg_dict_size


def reader_creator(tar_file, file_name, src_dict_size, trg_dict_size, src_lang):
    def reader():
        src_dict = __load_dict__(tar_file, src_dict_size, src_lang)
        trg_dict = __load_dict__(tar_file, trg_dict_size,
                                 ("de" if src_lang == "en" else "en"))

        # the indice for start mark, end mark, and unk are the same in source
        # language and target language. Here uses the source language
        # dictionary to determine their indices.
        start_id = src_dict[START_MARK]
        end_id = src_dict[END_MARK]
        unk_id = src_dict[UNK_MARK]

        src_col = 0 if src_lang == "en" else 1
        trg_col = 1 - src_col

        with tarfile.open(tar_file, mode="r") as f:
            for line in f.extractfile(file_name):
                line_split = line.strip().split("\t")
                if len(line_split) != 2:
                    continue
                src_words = line_split[src_col].split()
                src_ids = [start_id] + [
                    src_dict.get(w, unk_id) for w in src_words
                ] + [end_id]

                trg_words = line_split[trg_col].split()
                trg_ids = [trg_dict.get(w, unk_id) for w in trg_words]

                trg_ids_next = trg_ids + [end_id]
                trg_ids = [start_id] + trg_ids

                yield src_ids, trg_ids, trg_ids_next

    return reader


def train(src_dict_size, trg_dict_size, src_lang="en"):
    """
    WMT16 train set reader.

    This function returns the reader for train data. Each sample the reader
    returns is made up of three fields: the source language word index sequence,
    target language word index sequence and next word index sequence.


    NOTE:
    The original like for training data is:
    http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/training.tar.gz

    paddle.dataset.wmt16 provides a tokenized version of the original dataset by
    using moses's tokenization script:
    https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl

    Args:
        src_dict_size(int): Size of the source language dictionary. Three
                            special tokens will be added into the dictionary:
                            <s> for start mark, <e> for end mark, and <unk> for
                            unknown word.
        trg_dict_size(int): Size of the target language dictionary. Three
                            special tokens will be added into the dictionary:
                            <s> for start mark, <e> for end mark, and <unk> for
                            unknown word.
        src_lang(string): A string indicating which language is the source
                          language. Available options are: "en" for English
                          and "de" for Germany.

    Returns:
        callable: The train reader.
    """

    assert (src_lang in ["en", "de"], ("An error language type.  Only support: "
                                       "en (for English); de(for Germany)"))
    src_dict_size, trg_dict_size = __get_dict_size__(src_dict_size,
                                                     trg_dict_size, src_lang)

    return reader_creator(
        tar_file=paddle.v2.dataset.common.download(DATA_URL, "wmt16", DATA_MD5,
                                                   "wmt16.tar.gz"),
        file_name="wmt16/train",
        src_dict_size=src_dict_size,
        trg_dict_size=trg_dict_size,
        src_lang=src_lang)


def test(src_dict_size, trg_dict_size, src_lang="en"):
    """
    WMT16 test set reader.

    This function returns the reader for test data. Each sample the reader
    returns is made up of three fields: the source language word index sequence,
    target language word index sequence and next word index sequence.

    NOTE:
    The original like for test data is:
    http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/mmt16_task1_test.tar.gz

    paddle.dataset.wmt16 provides a tokenized version of the original dataset by
    using moses's tokenization script:
    https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl

    Args:
        src_dict_size(int): Size of the source language dictionary. Three
                            special tokens will be added into the dictionary:
                            <s> for start mark, <e> for end mark, and <unk> for
                            unknown word.
        trg_dict_size(int): Size of the target language dictionary. Three
                            special tokens will be added into the dictionary:
                            <s> for start mark, <e> for end mark, and <unk> for
                            unknown word.
        src_lang(string): A string indicating which language is the source
                          language. Available options are: "en" for English
                          and "de" for Germany.

    Returns:
        callable: The test reader.
    """

    assert (src_lang in ["en", "de"],
            ("An error language type.  "
             "Only support: en (for English); de(for Germany)"))

    src_dict_size, trg_dict_size = __get_dict_size__(src_dict_size,
                                                     trg_dict_size, src_lang)

    return reader_creator(
        tar_file=paddle.v2.dataset.common.download(DATA_URL, "wmt16", DATA_MD5,
                                                   "wmt16.tar.gz"),
        file_name="wmt16/test",
        src_dict_size=src_dict_size,
        trg_dict_size=trg_dict_size,
        src_lang=src_lang)


def validation(src_dict_size, trg_dict_size, src_lang="en"):
    """
    WMT16 validation set reader.

    This function returns the reader for validation data. Each sample the reader
    returns is made up of three fields: the source language word index sequence,
    target language word index sequence and next word index sequence.

    NOTE:
    The original like for validation data is:
    http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/validation.tar.gz

    paddle.dataset.wmt16 provides a tokenized version of the original dataset by
    using moses's tokenization script:
    https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl

    Args:
        src_dict_size(int): Size of the source language dictionary. Three
                            special tokens will be added into the dictionary:
                            <s> for start mark, <e> for end mark, and <unk> for
                            unknown word.
        trg_dict_size(int): Size of the target language dictionary. Three
                            special tokens will be added into the dictionary:
                            <s> for start mark, <e> for end mark, and <unk> for
                            unknown word.
        src_lang(string): A string indicating which language is the source
                          language. Available options are: "en" for English
                          and "de" for Germany.

    Returns:
        callable: The validation reader.
    """
    assert (src_lang in ["en", "de"],
            ("An error language type.  "
             "Only support: en (for English); de(for Germany)"))
    src_dict_size, trg_dict_size = __get_dict_size__(src_dict_size,
                                                     trg_dict_size, src_lang)

    return reader_creator(
        tar_file=paddle.v2.dataset.common.download(DATA_URL, "wmt16", DATA_MD5,
                                                   "wmt16.tar.gz"),
        file_name="wmt16/val",
        src_dict_size=src_dict_size,
        trg_dict_size=trg_dict_size,
        src_lang=src_lang)


def get_dict(lang, dict_size, reverse=False):
    """
    return the word dictionary for the specified language.

    Args:
        lang(string): A string indicating which language is the source
                      language. Available options are: "en" for English
                      and "de" for Germany.
        dict_size(int): Size of the specified language dictionary.
        reverse(bool): If reverse is set to False, the returned python
                       dictionary will use word as key and use index as value.
                       If reverse is set to True, the returned python
                       dictionary will use index as key and word as value.

    Returns:
        dict: The word dictionary for the specific language.
    """

    if lang == "en": dict_size = min(dict_size, TOTAL_EN_WORDS)
    else: dict_size = min(dict_size, TOTAL_DE_WORDS)

    dict_path = os.path.join(paddle.v2.dataset.common.DATA_HOME,
                             "wmt16/%s_%d.dict" % (lang, dict_size))
    assert (os.path.exists(dict_path), "Word dictionary does not exist. "
            "Please invoke paddle.dataset.wmt16.train/test/validation "
            "first to build the dictionary.")
    tar_file = os.path.join(paddle.v2.dataset.common.DATA_HOME, "wmt16.tar.gz")
    return __load_dict__(tar_file, dict_size, lang, reverse)


def fetch():
    """download the entire dataset.
    """
    paddle.v4.dataset.common.download(DATA_URL, "wmt16", DATA_MD5,
                                      "wmt16.tar.gz")


def convert(path, src_dict_size, trg_dict_size, src_lang):
    """Converts dataset to recordio format.
    """

    paddle.v2.dataset.common.convert(
        path,
        train(
            src_dict_size=src_dict_size,
            trg_dict_size=trg_dict_size,
            src_lang=src_lang),
        1000,
        "wmt16_train")
    paddle.v2.dataset.common.convert(
        path,
        test(
            src_dict_size=src_dict_size,
            trg_dict_size=trg_dict_size,
            src_lang=src_lang),
        1000,
        "wmt16_test")
    paddle.v2.dataset.common.convert(
        path,
        validation(
            src_dict_size=src_dict_size,
            trg_dict_size=trg_dict_size,
            src_lang=src_lang),
        1000,
        "wmt16_validation")