test_hsigmoid.py 8.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle import fluid, nn
import paddle.fluid.dygraph as dg
import paddle.nn.functional as F
import paddle.fluid.initializer as I
import numpy as np
import unittest


class HSigmoidTestCase(unittest.TestCase):
    def __init__(self,
                 methodName="runTest",
                 batch_size=4,
                 feature_size=6,
                 num_classes=8,
                 labels=None,
                 path_code=None,
                 path_table=None,
                 is_sparse=False,
                 dtype="float32"):
        super(HSigmoidTestCase, self).__init__()
        self.batch_size = batch_size
        self.feature_size = feature_size
        self.num_classes = num_classes
        self.dtype = dtype
        self.is_sparse = is_sparse

        self.labels = labels
        self.path_code = path_code
        self.path_table = path_table
        self.is_custom = path_code is not None and path_table is not None

    def setUp(self):
        input_shape = (self.batch_size, self.feature_size)
        self.input = np.random.uniform(
            -1, 1, size=input_shape).astype(self.dtype)
        if self.labels is None:
            self.labels = np.random.randint(
                0, self.num_classes, size=(self.batch_size, 1)).astype(np.int64)
        C = self.num_classes if self.is_custom else self.num_classes - 1
        self.weight_shape = (C, self.feature_size)
        self.weight = np.random.randn(*self.weight_shape).astype(self.dtype)
        self.bias_shape = (C, 1)
        self.bias = np.random.randn(*self.bias_shape).astype(self.dtype)

    def fluid_layer(self, place):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                x = fluid.data(
                    "input", [-1, self.feature_size], dtype=self.dtype)
                label = fluid.data("labels", [-1, 1], dtype="int64")
                if self.is_custom:
                    path_table = fluid.data(
                        "path_table", [-1, -1], dtype="int64")
                    path_code = fluid.data("path_code", [-1, -1], dtype="int64")
                else:
                    path_table = path_code = None
                y = fluid.layers.hsigmoid(
                    x,
                    label,
                    self.num_classes,
                    param_attr=I.NumpyArrayInitializer(self.weight),
                    bias_attr=I.NumpyArrayInitializer(self.bias),
                    path_table=path_table,
                    path_code=path_code,
                    is_custom=self.is_custom,
                    is_sparse=self.is_sparse, )
        exe = fluid.Executor(place)
        exe.run(start)
        feed_dict = {"input": self.input, "labels": self.labels}
        if self.is_custom:
            feed_dict["path_code"] = self.path_code
            feed_dict["path_table"] = self.path_table
        y_np, = exe.run(main, feed=feed_dict, fetch_list=[y])
        return y_np

    def functional(self, place):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                x = fluid.data(
                    "input", [-1, self.feature_size], dtype=self.dtype)
                label = fluid.data("labels", [-1, 1], dtype="int64")
                if self.is_custom:
                    path_table = fluid.data(
                        "path_table", [-1, -1], dtype="int64")
                    path_code = fluid.data("path_code", [-1, -1], dtype="int64")
                else:
                    path_table = path_code = None
                w = fluid.data("weight", self.weight_shape, dtype=self.dtype)
                b = fluid.data("bias", self.bias_shape, dtype=self.dtype)
                y = F.hsigmoid(
                    x,
                    label,
                    w,
                    b,
                    self.num_classes,
                    is_sparse=self.is_sparse,
                    path_table=path_table,
                    path_code=path_code)

        exe = fluid.Executor(place)
        exe.run(start)
        feed_dict = {
            "input": self.input,
            "labels": self.labels,
            "weight": self.weight,
            "bias": self.bias
        }
        if self.is_custom:
            feed_dict["path_code"] = self.path_code
            feed_dict["path_table"] = self.path_table
        y_np, = exe.run(main, feed=feed_dict, fetch_list=[y])
        return y_np

    def nn_layer(self, place):
        with dg.guard(place):
            x_var = dg.to_variable(self.input)
            label_var = dg.to_variable(self.labels)
            if self.is_custom:
                path_code_var = dg.to_variable(self.path_code)
                path_table_var = dg.to_variable(self.path_table)
            else:
                path_code_var = path_table_var = None
            hierarchical_softmax = nn.HSigmoid(
                self.feature_size,
                self.num_classes,
                is_custom=self.is_custom,
                is_sparse=self.is_sparse,
                param_attr=I.NumpyArrayInitializer(self.weight),
                bias_attr=I.NumpyArrayInitializer(self.bias),
                dtype=self.dtype)
            y_var = hierarchical_softmax(
                x_var,
                label_var,
                path_table=path_table_var,
                path_code=path_code_var)
            y_np = y_var.numpy()
        return y_np

    def _test_equivalence(self, place):
        result1 = self.fluid_layer(place)
        result2 = self.functional(place)
        result3 = self.nn_layer(place)
        np.testing.assert_array_almost_equal(result1, result2)
        np.testing.assert_array_almost_equal(result2, result3)

    def runTest(self):
        place = fluid.CPUPlace()
        self._test_equivalence(place)


class HSigmoidTestErrorCase(HSigmoidTestCase):
    def runTest(self):
        place = fluid.CPUPlace()
        with dg.guard(place):
            with self.assertRaises(ValueError):
                self.nn_layer()

    def nn_layer(self):
        x_var = dg.to_variable(self.input)
        label_var = dg.to_variable(self.labels)
        if self.is_custom:
            path_code_var = dg.to_variable(self.path_code)
            path_table_var = dg.to_variable(self.path_table)
        else:
            path_code_var = path_table_var = None
        hierarchical_softmax = nn.HSigmoid(
            self.feature_size,
            self.num_classes,
            is_custom=self.is_custom,
            param_attr=I.NumpyArrayInitializer(self.weight),
            bias_attr=I.NumpyArrayInitializer(self.bias),
            dtype=self.dtype)
        y_var = hierarchical_softmax(
            x_var,
            label_var,
            path_table=path_table_var,
            path_code=path_code_var)
        y_np = y_var.numpy()
        return y_np


def load_tests(loader, standard_tests, pattern):
    suite = unittest.TestSuite()
    suite.addTest(HSigmoidTestCase(methodName="runTest"))
    suite.addTest(
        HSigmoidTestCase(
            methodName="runTest",
            batch_size=4,
            feature_size=6,
            num_classes=8,
            labels=np.array([0, 1, 4, 5]).astype(np.int64),
            path_table=np.array([(0, 2, -1, -1, -1), (0, 1, 3, -1, -1), (
                0, 1, 4, -1, -1), (0, 2, -1, -1, -1)]).astype(np.int64),
            path_code=np.array([(0, 0, -1, -1, -1), (1, 1, 1, -1, -1), (
                1, 0, 0, -1, -1), (0, 1, -1, -1, -1)]).astype(np.int64)))
    suite.addTest(HSigmoidTestErrorCase(methodName="runTest", num_classes=1))
    return suite


if __name__ == "__main__":
    unittest.main()