group_norm_op.cu 24.1 KB
Newer Older
D
Dun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#ifdef __NVCC__
16
#include "cub/cub.cuh"
17 18 19
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
20
namespace cub = hipcub;
21 22
#endif

D
Dun 已提交
23
#include "paddle/fluid/operators/group_norm_op.h"
24 25
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
D
Dun 已提交
26 27 28 29

namespace paddle {
namespace operators {

30
using DataLayout = framework::DataLayout;
31
enum GroupNormKernelFlags { kHasScale = 1, kHasBias = 2 };
32
#define ALIGN_BYTES 16
33

P
peizhilin 已提交
34 35 36
#define CHECK_CASE(i, flags, kernel_name, ...)                              \
  if (i == flags) {                                                         \
    kernel_name<T, i><<<grid, threads, 0, dev_ctx.stream()>>>(__VA_ARGS__); \
37 38 39 40 41 42
  }

// 0 for no scale, no bias
// 1 for has scale, no bias
// 2 for no scale, has bias
// 3 for has scale, has bias
P
peizhilin 已提交
43 44 45 46 47
#define UNROLL_ALL_CASES(flags, kernel_name, ...) \
  CHECK_CASE(0, flags, kernel_name, __VA_ARGS__)  \
  CHECK_CASE(1, flags, kernel_name, __VA_ARGS__)  \
  CHECK_CASE(2, flags, kernel_name, __VA_ARGS__)  \
  CHECK_CASE(3, flags, kernel_name, __VA_ARGS__)
48 49 50 51 52 53 54 55 56

template <typename T>
__device__ __inline__ void CudaAtomicAddWithWarp(T* sum, T value) {
  typedef cub::WarpReduce<T> WarpReduce;
  typename WarpReduce::TempStorage temp_storage;
  value = WarpReduce(temp_storage).Sum(value);
  if (cub::LaneId() == 0) platform::CudaAtomicAdd(sum, value);
}

D
Dun 已提交
57
template <typename T>
58
__global__ void GroupNormForwardGetMeanAndVar(const T* x, int N, int C, int W,
D
Dun 已提交
59
                                              int imsize, int groups,
60
                                              int group_size, T* mean, T* var) {
D
Dun 已提交
61 62 63
  int gid = blockIdx.y;
  int cid = blockIdx.x;
  int bid = blockIdx.z;
64
  int H = imsize / W;
D
Dun 已提交
65 66 67 68 69
  int number = min(group_size, static_cast<int>(C - gid * group_size));
  int ccid = gid * group_size + cid;
  if (ccid >= C) return;
  T x_mean = 0, x_var = 0;
  for (int imid = threadIdx.x; imid < imsize; imid += blockDim.x) {
70
    T val;
71 72 73 74
    int hid = imid / W;
    int wid = imid % W;
    val = x[(bid * H + hid) * W * C + wid * C + ccid];

D
Dun 已提交
75 76 77 78 79
    x_mean += val;
    x_var += val * val;
  }
  x_mean /= number * imsize;
  x_var /= number * imsize;
80 81
  CudaAtomicAddWithWarp(&mean[bid * groups + gid], x_mean);
  CudaAtomicAddWithWarp(&var[bid * groups + gid], x_var);
D
Dun 已提交
82 83
}

84 85 86 87 88 89 90 91 92
template <typename T, typename AccT, int VecSize, int Num>
__device__ __forceinline__ void ThreadReduce(phi::Array<const T*, Num> arrs,
                                             int size, const int offset,
                                             AccT* out_mean, AccT* out_var) {
  const T* x = arrs[0];
  const T* y;
  if (Num == 2) {
    y = arrs[1];
  }
93 94 95
  using VecT = kps::details::VectorType<T, VecSize>;
  int tid = threadIdx.x;
  if (offset > 0) {
96 97 98 99
    x -= offset;
    if (Num == 2) {
      y -= offset;
    }
100 101
    size += offset;
    if (tid >= offset) {
102 103 104 105 106 107 108
      if (Num == 1) {
        *out_mean += x[tid];
        *out_var += x[tid] * x[tid];
      } else if (Num == 2) {
        *out_mean += y[tid];
        *out_var += y[tid] * x[tid];
      }
109 110
    }
    size -= blockDim.x;
111 112 113 114
    x += blockDim.x;
    if (Num == 2) {
      y += blockDim.x;
    }
115 116 117
  }
  int remain = size % (VecSize * blockDim.x);

118 119 120 121
  T ins_x[VecSize];
  T ins_y[VecSize];
  VecT* ins_vec_x = reinterpret_cast<VecT*>(&ins_x);
  VecT* ins_vec_y = reinterpret_cast<VecT*>(&ins_y);
122 123 124

  // vector part
  for (; VecSize * tid < (size - remain); tid += blockDim.x) {
125 126 127 128
    *ins_vec_x = reinterpret_cast<const VecT*>(x)[tid];
    if (Num == 2) {
      *ins_vec_y = reinterpret_cast<const VecT*>(y)[tid];
    }
129 130 131

#pragma unroll
    for (int i = 0; i < VecSize; ++i) {
132 133 134 135 136 137 138
      if (Num == 1) {
        *out_mean += ins_x[i];
        *out_var += ins_x[i] * ins_x[i];
      } else if (Num == 2) {
        *out_mean += ins_y[i];
        *out_var += ins_y[i] * ins_x[i];
      }
139 140 141 142 143 144
    }
  }

  // scalar part
  tid = size - remain + threadIdx.x;
  for (; tid < size; tid += blockDim.x) {
145 146 147 148 149 150 151
    if (Num == 1) {
      *out_mean += x[tid];
      *out_var += x[tid] * x[tid];
    } else if (Num == 2) {
      *out_mean += y[tid];
      *out_var += y[tid] * x[tid];
    }
152 153 154
  }
}

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
template <typename T>
__device__ __forceinline__ void ReduceMeanAndVar(T* mean, T* var, T x_mean,
                                                 T x_var, int size) {
  const int nc = blockIdx.x;
  x_mean = kps::details::BlockXReduce<T, kps::AddFunctor<T>>(
      x_mean, kps::AddFunctor<T>());
  x_var = kps::details::BlockXReduce<T, kps::AddFunctor<T>>(
      x_var, kps::AddFunctor<T>());
  __syncthreads();
  if (threadIdx.x == 0) {
    mean[nc] = static_cast<T>(x_mean / size);
    var[nc] = static_cast<T>(x_var / size);
  }
}

170 171 172 173 174 175 176 177 178 179
template <typename T>
__global__ void ScalarGetMeanAndVarNCHW(const T* x, T* mean, T* var, int size) {
  int i = blockIdx.x;
  T x_mean = 0, x_var = 0;
  for (int j = threadIdx.x; j < size; j += blockDim.x) {
    T val;
    val = x[i * size + j];
    x_mean += val;
    x_var += val * val;
  }
180
  ReduceMeanAndVar<T>(mean, var, x_mean, x_var, size);
181 182 183 184 185 186 187 188 189
}

template <typename T, typename AccT, int VecSize>
__global__ void VectorizedGetMeanAndVarNCHW(const T* x, T* mean, T* var,
                                            int size) {
  int i = blockIdx.x;
  AccT x_mean = static_cast<AccT>(0);
  AccT x_var = static_cast<AccT>(0);
  x += i * size;
190
  const int input_offset = ((uint64_t)x) % ALIGN_BYTES / sizeof(T);
191 192 193
  phi::Array<const T*, 1> ins;
  ins[0] = x;
  ThreadReduce<T, AccT, VecSize, 1>(ins, size, input_offset, &x_mean, &x_var);
194
  ReduceMeanAndVar<AccT>(mean, var, x_mean, x_var, size);
195 196
}

197
template <typename T, int flags>
D
Dun 已提交
198 199
__global__ void GroupNormForward(const T* x, const T* mean, const T* var,
                                 const T* scale, const T* bias, int N, int C,
200 201 202
                                 int W, int imsize, int groups, int group_size,
                                 T epsilon, T* y, T* real_var,
                                 const DataLayout data_layout) {
D
Dun 已提交
203 204 205
  int gid = blockIdx.y;
  int cid = blockIdx.x;
  int bid = blockIdx.z;
206
  int H = imsize / W;
D
Dun 已提交
207 208
  int ccid = gid * group_size + cid;
  if (ccid >= C) return;
209 210 211
  auto ng = bid * groups + gid;
  T x_mean = mean[ng];
  T x_var = var[ng];
D
Dun 已提交
212
  x_var = x_var - x_mean * x_mean;
213 214 215 216
  T var_inv = rsqrt(x_var + epsilon);
  if (cid == 0 && threadIdx.x == 0) {
    real_var[ng] = x_var;
  }
D
Dun 已提交
217
  for (int imid = threadIdx.x; imid < imsize; imid += blockDim.x) {
218 219
    T val;
    int hid, wid;
220
    int index = (bid * C + ccid) * imsize + imid;
221
    if (data_layout == DataLayout::kNCHW) {
222
      val = x[index];
223 224 225 226 227
    } else {
      hid = imid / W;
      wid = imid % W;
      val = x[(bid * H + hid) * W * C + wid * C + ccid];
    }
D
Dun 已提交
228
    val = (val - x_mean) * var_inv;
229 230 231 232 233 234
    if (flags & kHasScale) {
      val *= scale[ccid];
    }
    if (flags & kHasBias) {
      val += bias[ccid];
    }
235
    if (data_layout == DataLayout::kNCHW) {
236
      y[index] = val;
237 238 239
    } else {
      y[(bid * H + hid) * W * C + wid * C + ccid] = val;
    }
D
Dun 已提交
240 241 242 243 244 245 246 247
  }
}

template <typename T>
class GroupNormKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
248 249 250
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
D
Dun 已提交
251 252 253 254 255 256 257 258 259 260 261
    const float epsilon = ctx.Attr<float>("epsilon");
    auto* scale = ctx.Input<Tensor>("Scale");
    auto* bias = ctx.Input<Tensor>("Bias");
    auto* x = ctx.Input<Tensor>("X");

    auto* y = ctx.Output<Tensor>("Y");
    auto* mean = ctx.Output<Tensor>("Mean");
    auto* var = ctx.Output<Tensor>("Variance");
    const auto groups = ctx.Attr<int>("groups");

    const auto x_dims = x->dims();
262 263 264
    const int C =
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
265 266
    const int group_size = C / groups;

267 268 269
    const int W =
        (data_layout == DataLayout::kNCHW ? x_dims[x_dims.size() - 1]
                                          : x_dims[x_dims.size() - 2]);
D
Dun 已提交
270 271 272 273

    y->mutable_data<T>(ctx.GetPlace());
    mean->mutable_data<T>(ctx.GetPlace());
    var->mutable_data<T>(ctx.GetPlace());
274
    phi::funcs::SetConstant<platform::CUDADeviceContext, T> set_zero;
D
Dun 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    Tensor temp_var;
    temp_var.mutable_data<T>(var->dims(), ctx.GetPlace());
    auto* x_data = x->data<T>();
    auto* y_data = y->data<T>();
    auto* mean_data = mean->data<T>();
    auto* var_data = var->data<T>();
    auto* temp_var_data = temp_var.data<T>();

    const T* scale_data = nullptr;
    if (scale) scale_data = scale->data<T>();
    const T* bias_data = nullptr;
    if (bias) bias_data = bias->data<T>();

289 290 291 292 293 294 295 296 297 298
    int imsize = 1;
    if (data_layout == DataLayout::kNCHW) {
      for (int i = 2; i < x_dims.size(); ++i) {
        imsize *= x_dims[i];
      }
    } else {
      for (int i = 1; i < x_dims.size() - 1; ++i) {
        imsize *= x_dims[i];
      }
    }
299

R
ronnywang 已提交
300 301 302
#ifdef __HIPCC__
    int block_size = std::max(std::min(256, imsize), 64);
#else
303
    int block_size = std::min(1024, imsize);
R
ronnywang 已提交
304
#endif
305

D
Dun 已提交
306 307
    dim3 grid(group_size, groups, x_dims[0]);
    dim3 threads(block_size, 1, 1);
308 309 310 311 312 313 314 315 316 317 318 319 320
    if (data_layout == DataLayout::kNCHW) {
      using AccT = typename details::MPTypeTrait<T>::Type;
      constexpr int vec_size = sizeof(float4) / sizeof(T);
      int size = group_size * imsize;
      const int max_num_threads = 1024;
      int max_block_size = std::min(size / vec_size, max_num_threads);
      int block_size_nchw = 1;
      while (block_size_nchw < max_block_size) {
        block_size_nchw *= 2;
      }
      block_size_nchw = std::max(block_size_nchw, kps::details::kWarpSize);
      dim3 grids(x_dims[0] * groups);
      dim3 blocks(block_size_nchw);
321
      if (size < vec_size * block_size_nchw) {
322 323 324 325 326 327 328 329
        ScalarGetMeanAndVarNCHW<T><<<grids, blocks, 0, dev_ctx.stream()>>>(
            x_data, mean_data, temp_var_data, size);
      } else {
        VectorizedGetMeanAndVarNCHW<
            T, AccT, vec_size><<<grids, blocks, 0, dev_ctx.stream()>>>(
            x_data, mean_data, temp_var_data, size);
      }
    } else {
330 331
      set_zero(dev_ctx, mean, static_cast<T>(0));
      set_zero(dev_ctx, &temp_var, static_cast<T>(0));
332 333 334 335
      GroupNormForwardGetMeanAndVar<T><<<grid, threads, 0, dev_ctx.stream()>>>(
          x_data, x_dims[0], C, W, imsize, groups, group_size, mean_data,
          temp_var_data);
    }
336 337 338
    int flags =
        (scale_data != nullptr) * kHasScale + (bias_data != nullptr) * kHasBias;
    UNROLL_ALL_CASES(flags, GroupNormForward, x_data, mean_data, temp_var_data,
339 340
                     scale_data, bias_data, x_dims[0], C, W, imsize, groups,
                     group_size, epsilon, y_data, var_data, data_layout);
D
Dun 已提交
341 342 343
  }
};

344
template <typename T, int flags>
345 346 347 348 349 350
__global__ void GroupNormBackwardGetMeanAndVar(const T* x, const T* scale,
                                               const T* bias, const T* d_y,
                                               int N, int C, int W, int imsize,
                                               int groups, int group_size,
                                               T epsilon, T* d_mean, T* d_var,
                                               T* d_scale, T* d_bias) {
D
Dun 已提交
351 352 353
  int gid = blockIdx.y;
  int cid = blockIdx.x;
  int bid = blockIdx.z;
354
  int H = imsize / W;
D
Dun 已提交
355 356 357
  int number = min(group_size, static_cast<int>(C - gid * group_size));
  int ccid = gid * group_size + cid;
  if (ccid >= C) return;
358 359 360 361
  T x_scale = (flags & kHasScale) ? scale[ccid] : 1;
  T x_bias = (flags & kHasBias) ? bias[ccid] : 0;
  T x_scale_inv = 0;
  if (x_scale != 0) x_scale_inv = 1.0 / x_scale;
D
Dun 已提交
362 363 364
  T d_mean_data = 0, d_var_data = 0, d_scale_data = 0, d_bias_data = 0;

  for (int imid = threadIdx.x; imid < imsize; imid += blockDim.x) {
365
    T val, dval;
366 367 368 369 370

    int hid = imid / W;
    int wid = imid % W;
    val = x[(bid * H + hid) * W * C + wid * C + ccid] - x_bias;
    dval = d_y[(bid * H + hid) * W * C + wid * C + ccid];
D
Dun 已提交
371

372 373 374 375 376 377
    d_var_data += val * dval;
    d_mean_data += dval * x_scale;

    val = val * x_scale_inv;
    d_bias_data += dval;
    d_scale_data += val * dval;
D
Dun 已提交
378
  }
379 380 381 382
  CudaAtomicAddWithWarp(&(d_mean[bid * groups + gid]), d_mean_data);
  CudaAtomicAddWithWarp(&(d_var[bid * groups + gid]), d_var_data);
  if (flags & kHasScale) CudaAtomicAddWithWarp(&(d_scale[ccid]), d_scale_data);
  if (flags & kHasBias) CudaAtomicAddWithWarp(&(d_bias[ccid]), d_bias_data);
D
Dun 已提交
383 384
}

385 386 387
template <typename T, int flags>
__global__ void GroupNormBackward(const T* x, const T* d_y, const T* scale,
                                  const T* bias, const T* var, const T* d_mean,
388 389
                                  const T* d_var, int N, int C, int W,
                                  int imsize, int groups, int group_size,
390
                                  T epsilon, T* d_x) {
D
Dun 已提交
391 392 393
  int gid = blockIdx.y;
  int cid = blockIdx.x;
  int bid = blockIdx.z;
394
  int H = imsize / W;
D
Dun 已提交
395 396 397 398 399
  int number = min(group_size, static_cast<int>(C - gid * group_size));
  int ccid = gid * group_size + cid;
  if (ccid >= C) return;
  T x_var = var[bid * groups + gid];
  T d_x_mean = d_mean[bid * groups + gid];
400 401 402 403 404 405 406 407 408
  T d_x_var = d_var[bid * groups + gid];

  T x_var_inv = 1.0 / sqrt(x_var + epsilon);
  T number_inv = 1.0 / (number * imsize);

  T x_scale = (flags & kHasScale) ? scale[ccid] : 1;
  T x_bias = (flags & kHasBias) ? bias[ccid] : 0;
  T x_scale_inv = 0;
  if (x_scale != 0) x_scale_inv = 1.0 / x_scale;
D
Dun 已提交
409 410

  for (int imid = threadIdx.x; imid < imsize; imid += blockDim.x) {
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
    int hid = imid / W;
    int wid = imid % W;
    T tmp = x[(bid * H + hid) * W * C + wid * C + ccid];
    T v_y = (tmp - x_bias) * x_scale_inv;
    T dly = d_y[(bid * H + hid) * W * C + wid * C + ccid];
    d_x[(bid * H + hid) * W * C + wid * C + ccid] =
        x_var_inv *
        (dly * x_scale - number_inv * d_x_var * v_y - number_inv * d_x_mean);
  }
}

template <typename T>
__global__ void ScalarGetDsDbCUDAKernel(int imsize, const T* x, const T* dy,
                                        T* ds, T* db) {
  const int nc = blockIdx.x;
  T ds_sum = 0;
  T db_sum = 0;
  for (int i = threadIdx.x; i < imsize; i += blockDim.x) {
    const int index = nc * imsize + i;
    ds_sum += dy[index] * x[index];
    db_sum += dy[index];
  }
433
  ReduceMeanAndVar<T>(db, ds, db_sum, ds_sum, 1);
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
}

template <typename T>
__global__ void GetScaleBiasGradientCUDAKernel(int N, int C, int group,
                                               T epsilon, const T* mean,
                                               const T* var, const T* ds,
                                               const T* db, T* d_scale,
                                               T* d_bias) {
  const int c = blockIdx.x * blockDim.x + threadIdx.x;
  if (c < C) {
    const int G = group;
    const int D = C / G;
    T sum1 = 0;
    T sum2 = 0;
    for (int n = 0; n < N; ++n) {
      const int nc = n * C + c;
      const int ng = n * G + c / D;
      sum1 += (d_scale == nullptr)
                  ? T(0)
                  : ((ds[nc] - db[nc] * static_cast<T>(mean[ng])) *
                     static_cast<T>(rsqrt(var[ng] + epsilon)));
      sum2 += (d_bias == nullptr) ? T(0) : db[nc];
    }
    if (d_scale != nullptr) {
      d_scale[c] = sum1;
    }
    if (d_bias != nullptr) {
      d_bias[c] = sum2;
462
    }
D
Dun 已提交
463 464 465
  }
}

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
template <typename T, int BlockDim>
__global__ void GetBackwardParamsCUDAKernel(int imsize, int groups,
                                            int group_size, T epsilon,
                                            const T* mean, const T* var,
                                            const T* scale, const T* ds,
                                            const T* db, T* p1, T* p2, T* p3) {
  const int n = blockIdx.x;
  const int g = blockIdx.y;
  const int ng = n * groups + g;
  T sum1 = 0;
  T sum2 = 0;
  T var_inv = rsqrt(var[ng] + epsilon);
  for (int64_t i = threadIdx.x; i < group_size; i += blockDim.x) {
    const int64_t index = ng * group_size + i;
    const int64_t c = g * group_size + i;
    const T scale_v = scale == nullptr ? T(1) : static_cast<T>(scale[c]);
    sum1 += ds[index] * scale_v;
    sum2 += db[index] * scale_v;
    const T scale_c = scale == nullptr ? T(0) : static_cast<T>(scale[c]);
    p1[index] = scale_c * var_inv;
  }

  typedef cub::BlockReduce<T, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage ds_storage;
  __shared__ typename BlockReduce::TempStorage db_storage;
  sum1 = BlockReduce(ds_storage).Reduce(sum1, cub::Sum());
  sum2 = BlockReduce(db_storage).Reduce(sum2, cub::Sum());

  if (threadIdx.x == 0) {
    const T s = T(1) / static_cast<T>(group_size * imsize);
    const T x = (sum2 * static_cast<T>(mean[ng]) - sum1) *
                static_cast<T>(var_inv) * static_cast<T>(var_inv) *
                static_cast<T>(var_inv) * s;
    p2[ng] = x;
    p3[ng] = -x * static_cast<T>(mean[ng]) - sum2 * static_cast<T>(var_inv) * s;
  }
}

template <typename T>
__global__ void GetXGradientCUDAKernel(int imsize, int C, int group_size,
                                       int groups, T* p1, T* p2, T* p3,
                                       const T* x, const T* dy, T* dx) {
  int cid = blockIdx.x;
  int gid = blockIdx.y;
  int bid = blockIdx.z;
  int ccid = bid * C + gid * group_size + cid;
  int ng = bid * groups + gid;
  int nc = gid * group_size + cid;
  for (int imid = threadIdx.x; imid < imsize; imid += blockDim.x) {
    int index = (bid * C + nc) * imsize + imid;
    dx[index] = p1[ccid] * dy[index] + p2[ng] * x[index] + p3[ng];
  }
}

D
Dun 已提交
520 521 522 523 524
template <typename T>
class GroupNormGradKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
525 526 527
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
D
Dun 已提交
528
    const float epsilon = ctx.Attr<float>("epsilon");
529 530 531
    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* mean = ctx.Input<Tensor>("Mean");
D
Dun 已提交
532 533
    auto* var = ctx.Input<Tensor>("Variance");
    auto* scale = ctx.Input<Tensor>("Scale");
534
    auto* bias = ctx.Input<Tensor>("Bias");
D
Dun 已提交
535 536 537 538 539 540 541 542 543
    auto* d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto groups = ctx.Attr<int>("groups");

    // init output
    auto* d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto* d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    const auto& x_dims = x->dims();
544 545 546
    const int C =
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
547
    const int group_size = C / groups;
548 549 550
    const int W =
        (data_layout == DataLayout::kNCHW ? x_dims[x_dims.size() - 1]
                                          : x_dims[x_dims.size() - 2]);
D
Dun 已提交
551

552
    d_x->mutable_data<T>(ctx.GetPlace());
553
    phi::funcs::SetConstant<platform::CUDADeviceContext, T> set_zero;
D
Dun 已提交
554 555
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();

556 557 558 559 560
    Tensor ds, db;
    ds.mutable_data<T>({x_dims[0], C}, ctx.GetPlace());
    db.mutable_data<T>({x_dims[0], C}, ctx.GetPlace());
    T* ds_data = ds.data<T>();
    T* db_data = db.data<T>();
D
Dun 已提交
561

562
    auto* y_data = y->data<T>();
D
Dun 已提交
563
    auto* x_data = x->data<T>();
564 565
    T* d_x_data = nullptr;
    if (d_x) d_x_data = d_x->data<T>();
566
    auto* dy_data = d_y->data<T>();
D
Dun 已提交
567
    auto* var_data = var->data<T>();
568
    auto* mean_data = mean->data<T>();
D
Dun 已提交
569 570 571 572 573 574 575 576 577 578 579 580 581
    T* d_scale_data = nullptr;
    if (d_scale) {
      d_scale->mutable_data<T>(ctx.GetPlace());
      d_scale_data = d_scale->data<T>();
    }
    T* d_bias_data = nullptr;
    if (d_bias) {
      d_bias->mutable_data<T>(ctx.GetPlace());
      d_bias_data = d_bias->data<T>();
    }

    const T* scale_data = nullptr;
    if (scale) scale_data = scale->data<T>();
582 583
    const T* bias_data = nullptr;
    if (bias) bias_data = bias->data<T>();
D
Dun 已提交
584

585 586 587 588 589 590 591 592 593 594
    int imsize = 1;
    if (data_layout == DataLayout::kNCHW) {
      for (int i = 2; i < x_dims.size(); ++i) {
        imsize *= x_dims[i];
      }
    } else {
      for (int i = 1; i < x_dims.size() - 1; ++i) {
        imsize *= x_dims[i];
      }
    }
595

R
ronnywang 已提交
596 597
#ifdef __HIPCC__
    int block_size = std::max(std::min(256, imsize), 64);
598
    const int block_dims = 256;
R
ronnywang 已提交
599
#else
600
    int block_size = std::min(1024, imsize);
601
    const int block_dims = 1024;
R
ronnywang 已提交
602
#endif
D
Dun 已提交
603 604
    dim3 grid(group_size, groups, x_dims[0]);
    dim3 threads(block_size, 1, 1);
605 606
    int flags =
        (scale_data != nullptr) * kHasScale + (bias_data != nullptr) * kHasBias;
607
    if (data_layout == DataLayout::kNCHW) {
C
crystal 已提交
608 609 610
      ScalarGetDsDbCUDAKernel<
          T><<<x_dims[0] * C, block_size, 0, dev_ctx.stream()>>>(
          imsize, x_data, dy_data, ds_data, db_data);
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671

      if (d_scale || d_bias) {
        const int block = 256;
        GetScaleBiasGradientCUDAKernel<
            T><<<(C + block - 1) / block, block, 0, dev_ctx.stream()>>>(
            x_dims[0], C, groups, epsilon, mean_data, var_data, ds_data,
            db_data, d_scale_data, d_bias_data);
      }

      if (d_x_data != nullptr) {
        // p1 * dy + p2 * x + p3,
        // p1, p2, p3 represent the reverse calculation of temporary variables
        // p1 = scale * var_inv
        // p2 = (db * scale * mean - ds * scale) * pow(var_inv, 3) * (1/n)
        // p3 = -p2 * mean[ng] - db * scale * var_inv * (1/n);
        Tensor p1, p2, p3;
        p1.mutable_data<T>({x_dims[0] * C}, ctx.GetPlace());
        p2.mutable_data<T>({x_dims[0], groups}, ctx.GetPlace());
        p3.mutable_data<T>({x_dims[0], groups}, ctx.GetPlace());
        T* p1_data = p1.data<T>();
        T* p2_data = p2.data<T>();
        T* p3_data = p3.data<T>();

        GetBackwardParamsCUDAKernel<T, block_dims><<<
            dim3(x_dims[0], groups), block_dims, 0, dev_ctx.stream()>>>(
            imsize, groups, group_size, epsilon, mean_data, var_data,
            scale_data, ds_data, db_data, p1_data, p2_data, p3_data);
        GetXGradientCUDAKernel<T><<<grid, threads, 0, dev_ctx.stream()>>>(
            imsize, C, group_size, groups, p1_data, p2_data, p3_data, x_data,
            dy_data, d_x_data);
      }
    } else {
      if (d_scale) {
        set_zero(dev_ctx, d_scale, static_cast<T>(0));
      }
      if (d_bias) {
        set_zero(dev_ctx, d_bias, static_cast<T>(0));
      }

      Tensor temp_var;
      temp_var.mutable_data<T>(var->dims(), ctx.GetPlace());
      set_zero(dev_ctx, &temp_var, static_cast<T>(0));
      T* temp_var_data = temp_var.data<T>();

      Tensor temp_mean;
      temp_mean.mutable_data<T>(var->dims(), ctx.GetPlace());
      set_zero(dev_ctx, &temp_mean, static_cast<T>(0));
      T* temp_mean_data = temp_mean.data<T>();

      int flags = (scale_data != nullptr) * kHasScale +
                  (bias_data != nullptr) * kHasBias;
      UNROLL_ALL_CASES(flags, GroupNormBackwardGetMeanAndVar, y_data,
                       scale_data, bias_data, dy_data, x_dims[0], C, W, imsize,
                       groups, group_size, epsilon, temp_mean_data,
                       temp_var_data, d_scale_data, d_bias_data);
      if (d_x_data != nullptr) {
        UNROLL_ALL_CASES(flags, GroupNormBackward, y_data, dy_data, scale_data,
                         bias_data, var_data, temp_mean_data, temp_var_data,
                         x_dims[0], C, W, imsize, groups, group_size, epsilon,
                         d_x_data);
      }
672
    }
D
Dun 已提交
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    group_norm,
    ops::GroupNormKernel<paddle::platform::CUDADeviceContext, float>,
    ops::GroupNormKernel<paddle::platform::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
    group_norm_grad,
    ops::GroupNormGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::GroupNormGradKernel<paddle::platform::CUDADeviceContext, double>);