nn.py 135.3 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import paddle
M
minqiyang 已提交
18 19 20
from six.moves import reduce
from .. import core
from ..layers import utils
21
from ..layers import nn as F
22
from .. import dygraph_utils
M
minqiyang 已提交
23
from . import layers
24
from ..framework import Variable, in_dygraph_mode, OpProtoHolder, Parameter, _dygraph_tracer, _varbase_creator, default_main_program
25
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
M
minqiyang 已提交
26
from ..param_attr import ParamAttr
27
from ..initializer import Normal, Constant, NumpyArrayInitializer
H
hong 已提交
28 29
from .. import unique_name
from .layer_object_helper import LayerObjectHelper
30
from ..data_feeder import check_variable_and_dtype, check_type
L
lujun 已提交
31
import numpy as np
32
import numbers
33
import logging
34
import paddle.utils.deprecated as deprecated
35

36
__all__ = [
37
    'Conv2D', 'Conv3D', 'Pool2D', 'Linear', 'BatchNorm', 'Dropout', 'Embedding',
38 39
    'GRUUnit', 'InstanceNorm', 'LayerNorm', 'NCE', 'PRelu',
    'BilinearTensorProduct', 'Conv2DTranspose', 'Conv3DTranspose', 'GroupNorm',
C
ceci3 已提交
40
    'SpectralNorm', 'TreeConv', 'Flatten'
41
]
M
minqiyang 已提交
42 43


X
Xin Pan 已提交
44
class Conv2D(layers.Layer):
45
    """
46 47
    This interface is used to construct a callable object of the ``Conv2D`` class.
    For more details, refer to code examples.
48 49 50
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
51 52 53
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
54
    and W is the width of the filter. If the groups is greater than 1,
55
    C will equal the number of input feature map divided by the groups.
56
    Please refer to UFLDL's `convolution
57
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
T
tianshuo78520a 已提交
58
    for more details.
59 60 61 62 63 64 65 66
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

67
        Out = \\sigma (W \\ast X + b)
68 69 70

    Where:

71 72
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
73
    * :math:`\\ast`: Convolution operation.
74
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

97
    Parameters:
98
        num_channels(int): The number of channels in the input image.
99
        num_filters(int): The number of filter. It is as same as the output
100 101
            feature map.
        filter_size (int or tuple): The filter size. If filter_size is a tuple,
102 103
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
104
        stride (int or tuple, optional): The stride size. If stride is a tuple, it must
105
            contain two integers, (stride_H, stride_W). Otherwise, the
106 107
            stride_H = stride_W = stride. Default: 1.
        padding (int or tuple, optional): The padding size. If padding is a tuple, it must
108
            contain two integers, (padding_H, padding_W). Otherwise, the
109 110
            padding_H = padding_W = padding. Default: 0.
        dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
111
            contain two integers, (dilation_H, dilation_W). Otherwise, the
112 113
            dilation_H = dilation_W = dilation. Default: 1.
        groups (int, optional): The groups number of the Conv2d Layer. According to grouped
114 115 116
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
117 118
            connected to the second half of the input channels. Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
119 120 121 122
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
123
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d.
124 125 126 127
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
128 129 130 131 132
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
133

134 135 136 137
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.
138

139 140 141
    Returns:
        None
    
142
    Raises:
143
        ValueError: if ``use_cudnn`` is not a bool value.
144 145 146

    Examples:
        .. code-block:: python
L
lujun 已提交
147

148 149 150 151 152
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Conv2D
          import numpy as np

153
          data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
154
          with fluid.dygraph.guard():
155
              conv2d = Conv2D(3, 2, 3)
156 157
              data = to_variable(data)
              conv = conv2d(data)
158 159 160

    """

M
minqiyang 已提交
161
    def __init__(self,
162
                 num_channels,
M
minqiyang 已提交
163 164 165 166 167 168 169 170
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
171 172 173
                 use_cudnn=True,
                 act=None,
                 dtype='float32'):
M
minqiyang 已提交
174
        assert param_attr is not False, "param_attr should not be False here."
175 176
        super(Conv2D, self).__init__()
        self._num_channels = num_channels
M
minqiyang 已提交
177 178 179 180
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._padding = utils.convert_to_list(padding, 2, 'padding')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
181
        self._act = act
M
minqiyang 已提交
182 183 184
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
185
        self._use_mkldnn = core.globals()["FLAGS_use_mkldnn"]
186 187 188 189 190
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype
191

192
        if (self._num_channels == self._groups and
193 194
                num_filters % self._num_channels == 0 and
                not self._use_cudnn and not self._use_mkldnn):
195 196 197
            self._l_type = 'depthwise_conv2d'
        else:
            self._l_type = 'conv2d'
M
minqiyang 已提交
198

199
        self._num_channels = num_channels
200 201
        if self._groups is None:
            num_filter_channels = self._num_channels
M
minqiyang 已提交
202
        else:
203
            if self._num_channels % self._groups != 0:
M
minqiyang 已提交
204
                raise ValueError("num_channels must be divisible by groups.")
205 206
            num_filter_channels = self._num_channels // self._groups
        filter_size = utils.convert_to_list(self._filter_size, 2, 'filter_size')
207
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
M
minqiyang 已提交
208 209

        def _get_default_param_initializer():
210 211
            filter_elem_num = filter_size[0] * filter_size[
                1] * self._num_channels
M
minqiyang 已提交
212 213 214
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

215
        self.weight = self.create_parameter(
216
            attr=self._param_attr,
M
minqiyang 已提交
217 218 219 220
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

221
        self.bias = self.create_parameter(
222 223
            attr=self._bias_attr,
            shape=[self._num_filters],
M
minqiyang 已提交
224 225
            dtype=self._dtype,
            is_bias=True)
M
minqiyang 已提交
226 227

    def forward(self, input):
228 229 230
        if in_dygraph_mode() and self._l_type == 'conv2d':
            attrs = ('strides', self._stride, 'paddings', self._padding,
                     'dilations', self._dilation, 'groups', self._groups
231 232
                     if self._groups else 1, 'use_cudnn', self._use_cudnn,
                     'use_mkldnn', self._use_mkldnn)
233 234 235
            out = core.ops.conv2d(input, self.weight, *attrs)
            pre_bias = out

236 237 238 239
            pre_act = dygraph_utils._append_bias_in_dygraph(
                pre_bias, self.bias, 1, use_mkldnn=self._use_mkldnn)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, self._act, use_mkldnn=self._use_mkldnn)
240 241
        inputs = {
            'Input': [input],
242
            'Filter': [self.weight],
243 244 245 246 247 248 249
        }
        attrs = {
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups if self._groups else 1,
            'use_cudnn': self._use_cudnn,
250
            'use_mkldnn': self._use_mkldnn,
251
        }
252 253 254

        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], 'Conv2D')
M
minqiyang 已提交
255 256 257
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

M
minqiyang 已提交
258 259 260 261
        self._helper.append_op(
            type=self._l_type,
            inputs={
                'Input': input,
262
                'Filter': self.weight,
M
minqiyang 已提交
263
            },
M
minqiyang 已提交
264
            outputs={"Output": pre_bias},
265
            attrs=attrs)
M
minqiyang 已提交
266

267
        if self.bias is not None:
268 269 270 271 272
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
273
                        'Y': [self.bias]},
274
                outputs={'Out': [pre_act]},
275 276
                attrs={'axis': 1,
                       'use_mkldnn': self._use_mkldnn})
277 278
        else:
            pre_act = pre_bias
M
minqiyang 已提交
279

L
lujun 已提交
280
        # Currently, we don't support inplace in dygraph mode
281
        return self._helper.append_activation(pre_act, act=self._act)
M
minqiyang 已提交
282 283


L
lujun 已提交
284
class Conv3D(layers.Layer):
285 286 287 288 289
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
D
DuYao 已提交
290 291
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
292 293 294 295 296 297 298 299 300 301 302 303 304 305
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

D
DuYao 已提交
306
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

332
    Parameters:
333
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
334
        num_filters(int): The number of filter. It is as same as the output image channel.
D
DuYao 已提交
335
        filter_size (int|tuple, optional): The filter size. If filter_size is a tuple,
336
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
D
DuYao 已提交
337 338 339
            Otherwise, the filter will be a square, filter_size_depth = filter_size_height
            = filter_size_width = filter_size.
        stride (int|tuple, optional): The stride size. If stride is a tuple, it must
340
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
D
DuYao 已提交
341 342
            stride_D = stride_H = stride_W = stride. The default value is 1.
        padding (int|tuple, optional): The padding size. If padding is a tuple, it must
343
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
D
DuYao 已提交
344 345
            padding_D = padding_H = padding_W = padding. The default value is 0.
        dilation (int|tuple, optional): The dilation size. If dilation is a tuple, it must
346
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
347 348
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups (int, optional): The groups number of the Conv3d Layer. According to grouped
349 350 351
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
D
DuYao 已提交
352 353
            connected to the second half of the input channels. The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
354 355 356
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
D
DuYao 已提交
357 358
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
359 360 361
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
362 363 364 365 366
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
367
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
368

D
DuYao 已提交
369 370 371 372
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
373

374
    Returns:
D
DuYao 已提交
375
        None.
376 377 378 379 380 381 382 383

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

384 385 386 387 388 389
          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
              conv3d = fluid.dygraph.nn.Conv3D(
390
                    num_channels=3, num_filters=2, filter_size=3, act="relu")
391 392
              ret = conv3d(fluid.dygraph.base.to_variable(data))

393 394
    """

L
lujun 已提交
395
    def __init__(self,
396
                 num_channels,
L
lujun 已提交
397 398 399 400 401 402 403 404 405
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
406 407
                 act=None,
                 dtype='float32'):
L
lujun 已提交
408
        assert param_attr is not False, "param_attr should not be False here."
409 410
        super(Conv3D, self).__init__()
        self._num_channels = num_channels
L
lujun 已提交
411 412 413
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._padding = utils.convert_to_list(padding, 3, 'padding')
414
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
L
lujun 已提交
415 416
        self._act = act
        self._use_cudnn = use_cudnn
417 418 419 420
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
421
        self._dtype = dtype
422 423

        if self._groups is None:
424
            num_filter_channels = self._num_channels
L
lujun 已提交
425
        else:
426
            if self._num_channels % self._groups != 0:
L
lujun 已提交
427
                raise ValueError("num_channels must be divisible by groups.")
428
            num_filter_channels = self._num_channels // self._groups
L
lujun 已提交
429

430 431
        filter_size = utils.convert_to_list(self._filter_size, 3, 'filter_size')
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
L
lujun 已提交
432 433 434

        def _get_default_param_initializer():
            filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
435
                2] * self._num_channels
L
lujun 已提交
436 437 438
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

439
        self.weight = self.create_parameter(
440
            attr=self._param_attr,
L
lujun 已提交
441 442 443 444
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

445
        self.bias = self.create_parameter(
446 447
            attr=self._bias_attr,
            shape=[self._num_filters],
L
lujun 已提交
448 449 450 451 452 453 454 455
            dtype=self._dtype,
            is_bias=True)

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
456
            type='conv3d',
L
lujun 已提交
457 458
            inputs={
                'Input': input,
459
                'Filter': self.weight,
L
lujun 已提交
460 461 462 463 464 465 466 467 468 469 470
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False
            })

471
        if self.bias is not None:
472 473 474 475 476
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
477
                        'Y': [self.bias]},
478 479 480 481
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
L
lujun 已提交
482 483 484 485 486

        return self._helper.append_activation(pre_act, act=self._act)


class Conv3DTranspose(layers.Layer):
L
lujun 已提交
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
    """
    **Convlution3D transpose layer**

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

D
DuYao 已提交
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\

    **Note**:

          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
          conv3d_transpose can compute the kernel size automatically.

L
lujun 已提交
552

553
    Parameters:
554
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
555 556
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
557
        filter_size(int|tuple): The filter size. If filter_size is a tuple,
L
lujun 已提交
558
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
559
            Otherwise, the filter will be a square.
D
DuYao 已提交
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
        padding(int|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            The default value is 0.
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
        dilation(int|tuple, optional): The dilation size. If dilation is a tuple, it must
L
lujun 已提交
575
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
576 577
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by
L
lujun 已提交
578 579 580 581
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
D
DuYao 已提交
582 583
            The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
L
lujun 已提交
584 585
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
586 587
            is not set, the parameter is initialized with Xavier. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
L
lujun 已提交
588 589 590
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
591 592 593 594 595 596 597
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
        name(str, optional): The default value is None. Normally there is no need for user 
            to set this property. For more information, please refer to :ref:`api_guide_Name`.
L
lujun 已提交
598

D
DuYao 已提交
599 600 601 602
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
603

L
lujun 已提交
604
    Returns:
D
DuYao 已提交
605
        None.
L
lujun 已提交
606 607 608 609 610 611 612 613

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

614 615 616 617 618 619
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
             conv3dTranspose = fluid.dygraph.nn.Conv3DTranspose(
620
                    num_channels=3,
621 622 623 624 625
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False)
             ret = conv3dTranspose(fluid.dygraph.base.to_variable(data))

L
lujun 已提交
626 627
    """

L
lujun 已提交
628
    def __init__(self,
629
                 num_channels,
L
lujun 已提交
630
                 num_filters,
631
                 filter_size,
L
lujun 已提交
632 633 634 635 636 637 638 639
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
                 act=None,
640 641
                 dtype='float32'):
        super(Conv3DTranspose, self).__init__()
L
lujun 已提交
642 643 644 645 646 647 648
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
        self._padding = utils.convert_to_list(padding, 3, 'padding')
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
        self._param_attr = param_attr
649
        self._num_channels = num_channels
L
lujun 已提交
650 651 652 653 654 655
        self._filter_size = filter_size
        self._groups = 1 if groups is None else groups
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._bias_attr = bias_attr
        self._act = act
656
        self._dtype = dtype
L
lujun 已提交
657

658 659
        self._filter_size = utils.convert_to_list(
            self._filter_size, 3, 'conv3d_transpose.filter_size')
L
lujun 已提交
660

661 662
        filter_shape = [self._num_channels, self._num_filters // self._groups
                        ] + self._filter_size
663
        self.weight = self.create_parameter(
L
lujun 已提交
664
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
665 666 667 668 669
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)
L
lujun 已提交
670 671 672 673 674 675 676

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
        self._helper.append_op(
            type="conv3d_transpose",
            inputs={'Input': [input],
677
                    'Filter': [self.weight]},
L
lujun 已提交
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
            outputs={'Output': pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn
            })

        if self._bias_attr:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
693
                        'Y': [self.bias]},
L
lujun 已提交
694 695 696 697 698 699 700 701 702
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        # Currently, we don't support inplace in imperative mode
        return self._helper.append_activation(pre_act, act=self._act)


X
Xin Pan 已提交
703
class Pool2D(layers.Layer):
704
    """
705 706 707 708
    :alias_main: paddle.nn.Pool2D
	:alias: paddle.nn.Pool2D,paddle.nn.layer.Pool2D,paddle.nn.layer.common.Pool2D
	:old_api: paddle.fluid.dygraph.Pool2D

709 710 711 712 713
    This interface is used to construct a callable object of the ``Pool2D`` class.
    For more details, refer to code examples.
    The pooling2d operation calculates the output based on the input, pool_type and pool_size, pool_stride,
    pool_padding parameters.Input and output are in NCHW format, where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
L
lujun 已提交
714 715
    Parameters(ksize, strides, paddings) are two elements. These two elements represent height and width, respectively.
    The input(X) size and output(Out) size may be different.
716

717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
    Example:

        - Input:

          Input shape: :math:`(N, C, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C, H_{out}, W_{out})`

        If ``ceil_mode`` = False:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1

        If ``ceil_mode`` = True:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1

        If ``exclusive`` = False:

        .. math::

            hstart &= i * strides[0] - paddings[0] \\\\
            hend   &= hstart + ksize[0] \\\\
            wstart &= j * strides[1] - paddings[1] \\\\
            wend   &= wstart + ksize[1] \\\\
            Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}

        If ``exclusive`` = True:

        .. math::

            hstart &= max(0, i * strides[0] - paddings[0])\\\\
            hend &= min(H, hstart + ksize[0]) \\\\
            wstart &= max(0, j * strides[1] - paddings[1]) \\\\
            wend & = min(W, wstart + ksize[1]) \\\\
            Output(i ,j) & = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}

761
    Parameters:
762
        pool_size (int or list or tuple, optional): The pool kernel size. If pool kernel size is a tuple or list,
763
            it must contain two integers, (pool_size_Height, pool_size_Width).
764 765 766 767
            Otherwise, the pool kernel size will be a square of an int. Default: -1.
        pool_type(str, optional) : The pooling type, can be "max" for max-pooling and "avg" for average-pooling. 
            Default: max.
        pool_stride (int or list or tuple, optional): The pool stride size. If pool stride size is a tuple or list,
L
lujun 已提交
768
            it must contain two integers, (pool_stride_Height, pool_stride_Width). Otherwise,
769 770 771
            the pool stride size will be a square of an int. Default: 1.
        pool_padding (int or list or tuple, optional): The padding size for pooling operation. 
            If ``pool_padding`` is a tuple,
772
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
773 774 775 776 777 778 779
            Otherwise, the padding size for pooling operation will be a square of an int. Default: 0.
        global_pooling (bool, optional): Whether to use the global pooling. If global_pooling = true,
            kernel size and paddings will be ignored. Default: False.
        use_cudnn (bool, optional): Only used in cudnn kernel, need install cudnn. Default: True.
        ceil_mode (bool, optional): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default: False.
        exclusive (bool, optional): Whether to exclude padding points in average pooling mode. Default: True.
780 781 782 783
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            ``[batch_size, input_channels, input_height, input_width]``. When it is `"NHWC"`, the data is 
            stored in the order of: ``[batch_size, input_height, input_width, input_channels]``
784 785

    Returns:
786
        None
787 788

    Raises:
789 790 791 792
        ValueError: If ``pool_type`` is not "max" nor "avg".
        ValueError: If ``global_pooling`` is False and ``pool_size`` is -1.
        ValueError: If ``use_cudnn`` is not a bool value.
        ValueError: If ``data_format`` is not "NCHW" nor "NHWC".
793 794 795 796 797

    Examples:

        .. code-block:: python

L
lujun 已提交
798
          import paddle.fluid as fluid
799 800
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
801 802

          with fluid.dygraph.guard():
803
             data = numpy.random.random((3, 32, 32, 5)).astype('float32')
804
             pool2d = fluid.dygraph.Pool2D(pool_size=2,
805 806 807
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
808
             pool2d_res = pool2d(to_variable(data))
809 810 811

    """

M
minqiyang 已提交
812 813 814 815 816 817 818 819
    def __init__(self,
                 pool_size=-1,
                 pool_type="max",
                 pool_stride=1,
                 pool_padding=0,
                 global_pooling=False,
                 use_cudnn=True,
                 ceil_mode=False,
820 821 822 823
                 exclusive=True,
                 data_format="NCHW"):
        data_format = data_format.upper()  # supprt NHWC, nhwc, etc.
        pool_type = pool_type.lower()  # supprt max, Max, etc.
M
minqiyang 已提交
824 825 826 827 828 829 830 831 832 833 834 835 836
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
                str(pool_type))

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
                "and be a valid value. Received pool_size: " + str(pool_size))

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

837 838
        self._use_mkldnn = core.globals()["FLAGS_use_mkldnn"]

839 840 841 842 843
        if data_format not in ["NCHW", "NHWC"]:
            raise ValueError(
                "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
                "Attr(data_format): %s." % str(data_format))

844
        super(Pool2D, self).__init__()
M
minqiyang 已提交
845 846 847 848 849 850 851 852 853 854

        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
        self._pool_padding = utils.convert_to_list(pool_padding, 2,
                                                   'pool_padding')
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
855
        self._data_format = data_format
M
minqiyang 已提交
856 857 858
        self._l_type = 'pool2d'

    def forward(self, input):
859 860 861 862 863
        if in_dygraph_mode():
            attrs = ('pooling_type', self._pool_type, 'ksize', self._pool_size,
                     'global_pooling', self._global_pooling, 'strides',
                     self._pool_stride, 'paddings', self._pool_padding,
                     'use_cudnn', self._use_cudnn, 'ceil_mode', self._ceil_mode,
864 865
                     'use_mkldnn', self._use_mkldnn, 'exclusive',
                     self._exclusive, 'data_format', self._data_format)
866 867
            return core.ops.pool2d(input, *attrs)

868 869 870 871
        check_variable_and_dtype(
            input, 'input', ['int8', 'uint8', 'float16', 'float32', 'float64'],
            'Pool2D')

872 873 874 875 876 877 878 879
        attrs = {
            "pooling_type": self._pool_type,
            "ksize": self._pool_size,
            "global_pooling": self._global_pooling,
            "strides": self._pool_stride,
            "paddings": self._pool_padding,
            "use_cudnn": self._use_cudnn,
            "ceil_mode": self._ceil_mode,
880
            "use_mkldnn": self._use_mkldnn,
881
            "exclusive": self._exclusive,
882
            "data_format": self._data_format,
883 884 885
        }
        inputs = {"X": [input]}

M
minqiyang 已提交
886 887
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

M
minqiyang 已提交
888 889 890
        self._helper.append_op(
            type=self._l_type,
            inputs={"X": input},
M
minqiyang 已提交
891
            outputs={"Out": pool_out},
892
            attrs=attrs)
M
minqiyang 已提交
893
        return pool_out
M
minqiyang 已提交
894 895


S
songyouwei 已提交
896 897
class Linear(layers.Layer):
    """
898 899 900 901
    :alias_main: paddle.nn.Linear
	:alias: paddle.nn.Linear,paddle.nn.layer.Linear,paddle.nn.layer.common.Linear
	:old_api: paddle.fluid.dygraph.Linear
    
S
songyouwei 已提交
902 903 904 905 906 907 908 909
    Fully-connected linear transformation layer:

    .. math::

        Out = Act({XW + b})

    where :math:`X` is the input Tensor, :math:`W` and :math:`b` are weight and bias respectively.

910
    Linear layer takes only one ``Tensor`` input.
S
songyouwei 已提交
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
    The Linear layer multiplies input tensor with weight matrix and
    produces an output Tensor of shape [N, *, `output_dim`],
    where N is batch size and `*` means any number of additional dimensions.
    If ``bias_attr`` is not None, a bias variable will be created and added to the output.
    Finally, if ``act`` is not None, it will be applied to the output as well.

    Parameters:
        input_dim(int): The number of input units in this layer.
        output_dim(int): The number of output units in this layer.
        param_attr(ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
            weights(Parameter) of this layer. Default: None.
        bias_attr(ParamAttr or list of ParamAttr, optional): The attribute for the bias
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of this layer. Default: None.
        dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".

    Attributes:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Returns:
        None

    Examples:
        .. code-block:: python

          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Linear
          import numpy as np

          data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
          with fluid.dygraph.guard():
              linear = Linear(32, 64)
              data = to_variable(data)
              res = linear(data)  # [30, 10, 64]
    """

    def __init__(self,
                 input_dim,
                 output_dim,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
                 dtype="float32"):
        super(Linear, self).__init__()
        self._act = act
        self._dtype = dtype
        self.weight = self.create_parameter(
            shape=[input_dim, output_dim],
            attr=param_attr,
            dtype=dtype,
            is_bias=False)
        self.bias = self.create_parameter(
            shape=[output_dim], attr=bias_attr, dtype=dtype, is_bias=True)

969 970
        self._use_mkldnn = core.globals()["FLAGS_use_mkldnn"]

S
songyouwei 已提交
971
    def forward(self, input):
972
        if in_dygraph_mode():
973 974
            pre_bias = _varbase_creator(dtype=input.dtype)
            core.ops.matmul(input, self.weight, pre_bias, 'transpose_X', False,
975 976
                            'transpose_Y', False, "alpha", 1, "use_mkldnn",
                            self._use_mkldnn)
977
            pre_act = dygraph_utils._append_bias_in_dygraph(
978 979 980 981
                pre_bias,
                self.bias,
                axis=len(input.shape) - 1,
                use_mkldnn=self._use_mkldnn)
982

983 984
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, self._act, use_mkldnn=self._use_mkldnn)
985 986 987 988

        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], "Linear")

989
        attrs = {
S
songyouwei 已提交
990 991 992
            "transpose_X": False,
            "transpose_Y": False,
            "alpha": 1,
993
            "use_mkldnn": self._use_mkldnn,
994 995
        }
        inputs = {"X": [input], "Y": [self.weight]}
996

S
songyouwei 已提交
997 998
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
S
songyouwei 已提交
999
            type="matmul", inputs=inputs, outputs={"Out": tmp}, attrs=attrs)
1000
        if self.bias is not None:
S
songyouwei 已提交
1001 1002 1003 1004 1005 1006 1007
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [tmp],
                        'Y': [self.bias]},
                outputs={'Out': [pre_activation]},
1008 1009 1010 1011
                attrs={
                    'axis': len(input.shape) - 1,
                    'use_mkldnn': self._use_mkldnn
                })
S
songyouwei 已提交
1012 1013 1014 1015 1016
        else:
            pre_activation = tmp
        return self._helper.append_activation(pre_activation, act=self._act)


1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
class InstanceNorm(layers.Layer):
    """
    This interface is used to construct a callable object of the ``InstanceNorm`` class.
    For more details, refer to code examples.

    Can be used as a normalizer function for convolution or fully_connected operations.
    The required data format for this layer is one of the following:

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`

    Refer to `Instance Normalization: The Missing Ingredient for Fast Stylization <https://arxiv.org/pdf/1607.08022.pdf>`_
    for more details.

    :math:`input` is the input features over a mini-batch.

    ..  math::
        
        \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
        \\ mean\ of\ one\  feature\ map\ in\ mini-batch \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Note:
        `H` means height of feature map, `W` means width of feature map.

    Parameters:
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
ceci3 已提交
1049
        param_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
1050 1051 1052
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
C
ceci3 已提交
1053 1054
	     one. If it is set to False, will not create param_attr. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
1055 1056 1057
             If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
C
ceci3 已提交
1058
             If it is set to False, will not create bias_attr. Default: None.
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.

    Returns:
        None.

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
          import paddle

          # x's shape is [1, 3, 1, 2] 
          x = np.array([[[[1.0, 8.0]], [[10.0, 5.0]], [[4.0, 6.0]]]]).astype('float32')
          with fluid.dygraph.guard():
              x = to_variable(x)
              instanceNorm = paddle.nn.InstanceNorm(3)
              ret = instanceNorm(x)
              # ret's shape is [1, 3, 1, 2]; value is [-1 1 0.999999 -0.999999 -0.999995 0.999995] 
              print(ret)

    """

    def __init__(self,
                 num_channels,
                 epsilon=1e-5,
                 param_attr=None,
                 bias_attr=None,
                 dtype='float32'):
        super(InstanceNorm, self).__init__()

C
ceci3 已提交
1093 1094
        if param_attr == False or bias_attr == False:
            assert bias_attr == param_attr, "param_attr and bias_attr must be set to Fasle at the same time in InstanceNorm"
1095 1096 1097 1098 1099
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype

C
ceci3 已提交
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
        if param_attr != False and bias_attr != False:
            self.scale = self.create_parameter(
                attr=self._param_attr,
                shape=[num_channels],
                dtype=self._dtype,
                default_initializer=Constant(1.0),
                is_bias=False)
            self.bias = self.create_parameter(
                attr=self._bias_attr,
                shape=[num_channels],
                dtype=self._dtype,
                default_initializer=Constant(0.0),
                is_bias=True)
        else:
            self.scale = None
            self.bias = None
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127

    def forward(self, input):
        if in_dygraph_mode():
            out, _, _ = core.ops.instance_norm(input, self.scale, self.bias,
                                               'epsilon', self._epsilon)
            return out

        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 "InstanceNorm")

        attrs = {"epsilon": self._epsilon}

C
ceci3 已提交
1128 1129 1130 1131
        if self.scale and self.bias:
            inputs = {"X": [input], "Scale": [self.scale], "Bias": [self.bias]}
        else:
            inputs = {"X": [input]}
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150

        saved_mean = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        saved_variance = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        instance_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        outputs = {
            "Y": [instance_norm_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }

        self._helper.append_op(
            type="instance_norm", inputs=inputs, outputs=outputs, attrs=attrs)
        return instance_norm_out


M
minqiyang 已提交
1151
class BatchNorm(layers.Layer):
1152
    """
1153 1154 1155 1156
    :alias_main: paddle.nn.BatchNorm
	:alias: paddle.nn.BatchNorm,paddle.nn.layer.BatchNorm,paddle.nn.layer.norm.BatchNorm
	:old_api: paddle.fluid.dygraph.BatchNorm

1157 1158 1159 1160 1161
    This interface is used to construct a callable object of the ``BatchNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Batch Normalization Layer and can be used 
    as a normalizer function for conv2d and fully connected operations.
    The data is normalized by the mean and variance of the channel based on the current batch data.
1162 1163 1164 1165
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

1166 1167 1168
    When use_global_stats = False, the :math:`\\mu_{\\beta}` 
    and :math:`\\sigma_{\\beta}^{2}` are the statistics of one mini-batch.
    Calculated as follows:
1169 1170 1171 1172 1173 1174 1175 1176

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\

1177 1178
    - :math:`x` : mini-batch data
    - :math:`m` : the size of the mini-batch data
1179 1180 1181

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
1182 1183 1184 1185 1186 1187
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\
1188

1189 1190
    The normalization function formula is as follows:
 
1191 1192 1193
    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
1194 1195 1196 1197 1198 1199
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    - :math:`\\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\\gamma` : trainable proportional parameter
    - :math:`\\beta` : trainable deviation parameter
1200

1201
    Parameters:
1202
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
T
tianshuo78520a 已提交
1203
        act(str, optional): Activation to be applied to the output of batch normalization. Default: None.
1204 1205 1206
        is_test (bool, optional): A flag indicating whether it is in test phrase or not.
             This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
             Default: False.
1207 1208 1209
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
1210 1211 1212
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1213
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm.
1214 1215 1216
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1217 1218 1219 1220 1221 1222
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.
        data_layout(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        in_place(bool, optional): Make the input and output of batch norm reuse memory. Default: False.
        moving_mean_name(str, optional): The name of moving_mean which store the global Mean. Default: None.
        moving_variance_name(str, optional): The name of the moving_variance which store the global Variance. Default: None.
1223 1224
        do_model_average_for_mean_and_var(bool, optional): Whether parameter mean and variance should do model
            average when model average is enabled. Default: True.
1225
        use_global_stats(bool, optional): Whether to use global mean and
1226 1227 1228
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
1229 1230 1231 1232
            and variance are also used during train period. Default: False.
        trainable_statistics(bool, optional): Whether to calculate mean and var in eval mode. In eval mode, when
            setting trainable_statistics True, mean and variance will be calculated by current batch statistics.
            Default: False.
1233 1234

    Returns:
1235
        None
1236 1237 1238

    Examples:
        .. code-block:: python
L
lujun 已提交
1239 1240

          import paddle.fluid as fluid
1241 1242
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
1243

1244
          x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
L
lujun 已提交
1245
          with fluid.dygraph.guard():
1246
              x = to_variable(x)
1247
              batch_norm = fluid.BatchNorm(10)
1248
              hidden1 = batch_norm(x)
1249 1250
    """

M
minqiyang 已提交
1251 1252 1253 1254 1255 1256 1257 1258
    def __init__(self,
                 num_channels,
                 act=None,
                 is_test=False,
                 momentum=0.9,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1259
                 dtype='float32',
M
minqiyang 已提交
1260 1261 1262 1263
                 data_layout='NCHW',
                 in_place=False,
                 moving_mean_name=None,
                 moving_variance_name=None,
1264
                 do_model_average_for_mean_and_var=True,
1265 1266
                 use_global_stats=False,
                 trainable_statistics=False):
1267
        super(BatchNorm, self).__init__()
1268
        self._param_attr = param_attr
1269
        self._bias_attr = bias_attr
1270
        self._act = act
1271
        self._use_mkldnn = core.globals()["FLAGS_use_mkldnn"]
M
minqiyang 已提交
1272 1273 1274

        assert bias_attr is not False, "bias_attr should not be False in batch_norm."

1275 1276
        if dtype == "float16":
            self._dtype = "float32"
M
minqiyang 已提交
1277 1278 1279 1280 1281 1282
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
1283
        self.weight = self.create_parameter(
1284
            attr=self._param_attr,
M
minqiyang 已提交
1285 1286 1287
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))
1288
        self.weight.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1289

1290
        self.bias = self.create_parameter(
1291
            attr=self._bias_attr,
M
minqiyang 已提交
1292 1293 1294
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
1295
        self.bias.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1296

1297
        self._mean = self.create_parameter(
M
minqiyang 已提交
1298 1299 1300 1301 1302 1303 1304
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1305
        self._mean.stop_gradient = True
M
minqiyang 已提交
1306

1307
        self._variance = self.create_parameter(
M
minqiyang 已提交
1308 1309 1310 1311 1312 1313 1314
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1315
        self._variance.stop_gradient = True
M
minqiyang 已提交
1316 1317

        self._in_place = in_place
1318
        self._data_layout = data_layout
M
minqiyang 已提交
1319 1320 1321
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
1322
        self._fuse_with_relu = False
M
minqiyang 已提交
1323
        self._use_global_stats = use_global_stats
1324
        self._trainable_statistics = trainable_statistics
M
minqiyang 已提交
1325 1326 1327 1328 1329 1330 1331

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance
1332 1333 1334

        if in_dygraph_mode():
            attrs = ("momentum", self._momentum, "epsilon", self._epsilon,
1335
                     "is_test", not self.training, "data_layout",
1336 1337
                     self._data_layout, "use_mkldnn", self._use_mkldnn,
                     "fuse_with_relu", self._fuse_with_relu, "use_global_stats",
1338 1339
                     self._use_global_stats, 'trainable_statistics',
                     self._trainable_statistics)
1340
            batch_norm_out, _, _, _, _, _ = core.ops.batch_norm(
1341 1342
                input, self.weight, self.bias, self._mean, self._variance,
                mean_out, variance_out, *attrs)
1343

1344
            return dygraph_utils._append_activation_in_dygraph(
1345
                batch_norm_out, act=self._act, use_mkldnn=self._use_mkldnn)
1346

1347 1348 1349
        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], 'BatchNorm')

1350 1351 1352 1353 1354 1355 1356
        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": self._is_test,
            "data_layout": self._data_layout,
            "use_mkldnn": False,
            "fuse_with_relu": self._fuse_with_relu,
1357 1358
            "use_global_stats": self._use_global_stats,
            "trainable_statistics": self._trainable_statistics,
1359
        }
M
minqiyang 已提交
1360

1361 1362 1363 1364 1365 1366 1367 1368
        inputs = {
            "X": [input],
            "Scale": [self.weight],
            "Bias": [self.bias],
            "Mean": [self._mean],
            "Variance": [self._variance]
        }

1369 1370 1371 1372 1373 1374
        saved_mean = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        saved_variance = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        batch_norm_out = input if self._in_place else self._helper.create_variable_for_type_inference(
            self._dtype)
1375 1376 1377

        outputs = {
            "Y": [batch_norm_out],
M
miraiwk 已提交
1378
            "MeanOut": [],
1379 1380 1381 1382 1383
            "VarianceOut": [variance_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }

M
minqiyang 已提交
1384
        self._helper.append_op(
1385
            type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs)
M
minqiyang 已提交
1386

L
lujun 已提交
1387
        # Currently, we don't support inplace in dygraph mode
1388
        return self._helper.append_activation(batch_norm_out, self._act)
1389 1390


1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
class Dropout(layers.Layer):
    """
   This interface is used to construct a callable object of the ``Dropout`` class.
   For more details, refer to code examples.

   Drop or keep each element of input independently. Dropout is a regularization
   technique for reducing overfitting by preventing neuron co-adaption during
   training. The dropout operator randomly sets (according to the given dropout
   probability) the outputs of some units to zero, while others are remain
   unchanged.

   Dropout layer can be removed for efficiency concern.

   Parameters:
       p (float, optional): Probability of setting units to zero. Default: 0.5
       seed (int, optional): A Python integer used to create random seeds. If this
                   parameter is set to None, a random seed is used.
                   NOTE: If an integer seed is given, always the same output
                   units will be dropped. DO NOT use a fixed seed in training. Default: None.
       dropout_implementation(string, optional): ['downgrade_in_infer'(default)|'upscale_in_train']

                                       1. downgrade_in_infer(default), downgrade the outcome at inference

                                          - train: out = input * mask
                                          - inference: out = input * (1.0 - p)

                                          (mask is a tensor same shape with input, value is 0 or 1
                                          ratio of 0 is dropout_prob)
                                       2. upscale_in_train, upscale the outcome at training time

                                          - train: out = input * mask / ( 1.0 - p )
                                          - inference: out = input

                                          (mask is a tensor same shape with input, value is 0 or 1
                                          ratio of 0 is p)
       is_test (bool, optional): A flag indicating whether it is in test phrase or not.
                   This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
                   Default: False.

   Returns:
       None

   Examples:

       .. code-block:: python

           import paddle.fluid as fluid
           from paddle.fluid.dygraph.base import to_variable
           import numpy as np

           x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
           with fluid.dygraph.guard():
               x = to_variable(x)
               m = fluid.dygraph.Dropout(p=0.5)
               droped_train = m(x)
               # switch to eval mode
               m.eval()
               droped_eval = m(x)
   """

    def __init__(self,
                 p=0.5,
                 seed=None,
                 dropout_implementation="downgrade_in_infer",
                 is_test=False):
        super(Dropout, self).__init__()
        assert isinstance(p, (float, int)), "p argument should be a number"
        assert 0 <= p <= 1, "p argument should between 0 and 1"
        self._dropout_prob = p
        assert seed is None or isinstance(
            seed, int), "seed argument should be None or a integer"
        self._seed = seed
        assert dropout_implementation in (
            'downgrade_in_infer', 'upscale_in_train'
        ), "dropout_implementation argument should be 'downgrade_in_infer' or 'upscale_in_train'"
        self._dropout_implementation = dropout_implementation
        self._is_test = is_test

    def forward(self, input):
        prog = default_main_program()
        if (self._seed is None or self._seed == 0) and prog.random_seed != 0:
            self._seed = prog.random_seed
        attrs = {
            'dropout_prob': self._dropout_prob,
            'is_test': not self.training
            if in_dygraph_mode() else self._is_test,
            'fix_seed': self._seed is not None,
            'seed': self._seed if self._seed is not None else 0,
            'dropout_implementation': self._dropout_implementation,
        }

        if in_dygraph_mode():
            attrs = sum(attrs.items(), ())
            out, mask = core.ops.dropout(input, *attrs)
            return out

        out = self._helper.create_variable_for_type_inference(dtype=input.dtype)
        mask = self._helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)

        self._helper.append_op(
            type='dropout',
            inputs={'X': [input]},
            outputs={'Out': [out],
                     'Mask': [mask]},
            attrs=attrs)
        return out


1500 1501
class Embedding(layers.Layer):
    """
1502 1503 1504 1505
    :alias_main: paddle.nn.Embedding
	:alias: paddle.nn.Embedding,paddle.nn.layer.Embedding,paddle.nn.layer.common.Embedding
	:old_api: paddle.fluid.dygraph.Embedding

1506 1507
    **Embedding Layer**

Z
zhongpu 已提交
1508 1509 1510 1511 1512 1513
    This interface is used to construct a callable object of the ``Embedding`` class.
    For specific usage, refer to code examples. It implements the function of the Embedding Layer.
    This layer is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

1514 1515
    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.
Z
zhongpu 已提交
1516

1517
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
Z
zhongpu 已提交
1518 1519 1520 1521 1522 1523 1524
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
1525 1526
            input.data = [[1, 3], [2, 4], [4, 127]
            input.shape = [3, 2]
Z
zhongpu 已提交
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
                        
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
1540

1541
    Parameters:
L
lujun 已提交
1542 1543
        size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size
            of the dictionary of embeddings and the size of each embedding vector respectively.
Z
zhongpu 已提交
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set 
            True because sparse update is faster. But some optimizer does not support sparse update,
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` , 
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size). 
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter. 
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
1562
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
Z
zhongpu 已提交
1563 1564 1565
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(np.dtype|core.VarDesc.VarType|str): It refers to the data type of output Tensor.
            It must be "float32" or "float64". Default: "float32".
1566

Z
zhongpu 已提交
1567 1568
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1569

1570
    Returns:
Z
zhongpu 已提交
1571
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
1572 1573

    Examples:
1574

1575 1576
        .. code-block:: python

L
lujun 已提交
1577 1578 1579 1580
          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy as np

Z
zhongpu 已提交
1581
          # example 1
1582 1583
          inp_word = np.array([[2, 3, 5], [4, 2, 1]]).astype('int64')
          inp_word.shape  # [2, 3]
1584 1585
          dict_size = 20
          with fluid.dygraph.guard():
L
lujun 已提交
1586
              emb = fluid.dygraph.Embedding(
1587 1588 1589
                  size=[dict_size, 32],
                  param_attr='emb.w',
                  is_sparse=False)
L
lujun 已提交
1590
              static_rlt3 = emb(base.to_variable(inp_word))
1591
              static_rlt3.shape  # [2, 3, 32]
Z
zhongpu 已提交
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          with fluid.dygraph.guard():
              emb = fluid.dygraph.Embedding(
                  size=[128, 100],
                  param_attr= w_param_attrs,
                  is_sparse=False)
              static_rlt3 = emb(base.to_variable(inp_word))          
1606 1607
    """

1608 1609 1610 1611 1612 1613 1614
    def __init__(self,
                 size,
                 is_sparse=False,
                 is_distributed=False,
                 padding_idx=None,
                 param_attr=None,
                 dtype='float32'):
1615
        super(Embedding, self).__init__()
1616 1617 1618 1619
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed
        self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
J
JiabinYang 已提交
1620
            size[0] + padding_idx)
1621 1622 1623

        self._param_attr = param_attr
        self._dtype = dtype
J
JiabinYang 已提交
1624
        self._remote_prefetch = self._is_sparse and (not self._is_distributed)
1625 1626 1627
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

1628
        self.weight = self.create_parameter(
1629 1630 1631 1632 1633 1634
            attr=self._param_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input):
1635 1636 1637 1638 1639 1640
        if in_dygraph_mode():
            return core.ops.lookup_table_v2(
                self.weight, input, 'is_sparse', self._is_sparse,
                'is_distributed', self._is_distributed, 'remote_prefetch',
                self._remote_prefetch, 'padding_idx', self._padding_idx)

1641
        check_variable_and_dtype(input, 'input', ['int64'], 'Embedding')
1642 1643 1644 1645 1646 1647
        attrs = {
            'is_sparse': self._is_sparse,
            'is_distributed': self._is_distributed,
            'remote_prefetch': self._remote_prefetch,
            'padding_idx': self._padding_idx
        }
1648

1649 1650
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
1651
            type='lookup_table_v2',
1652
            inputs={'Ids': input,
1653
                    'W': self.weight},
1654
            outputs={'Out': out},
1655
            attrs=attrs)
1656 1657

        return out
M
minqiyang 已提交
1658 1659


1660
class LayerNorm(layers.Layer):
1661
    """
1662 1663 1664 1665
    :alias_main: paddle.nn.LayerNorm
	:alias: paddle.nn.LayerNorm,paddle.nn.layer.LayerNorm,paddle.nn.layer.norm.LayerNorm
	:old_api: paddle.fluid.dygraph.LayerNorm

1666 1667 1668
    This interface is used to construct a callable object of the ``LayerNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
1669
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
1670

1671
    The formula is as follows:
1672

1673
    ..  math::
1674

1675
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
1676

1677
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
1678

1679
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
1680

1681 1682 1683 1684 1685
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
1686

1687
    Parameters:
1688 1689 1690 1691
        normalized_shape(int or list or tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
1692
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
L
lujun 已提交
1693
            normalization. Default: True.
1694
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
L
lujun 已提交
1695
            normalization. Default: True.
1696
        epsilon(float, optional): The small value added to the variance to prevent
L
lujun 已提交
1697
            division by zero. Default: 1e-05.
1698
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
1699 1700 1701
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The
L
lujun 已提交
1702
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
1703
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
1704 1705 1706
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The
L
lujun 已提交
1707
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
1708
        act(str, optional): Activation to be applied to the output of layer normalization.
L
lujun 已提交
1709
                  Default: None.
1710 1711
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".

1712
    Returns:
1713
        None
1714

1715
    Examples:
1716

1717 1718 1719
        .. code-block:: python

          import paddle.fluid as fluid
1720
          from paddle.fluid.dygraph.base import to_variable
1721 1722
          import numpy

1723
          x = numpy.random.random((3, 32, 32)).astype('float32')
1724
          with fluid.dygraph.guard():
1725
              x = to_variable(x)
1726
              layerNorm = fluid.LayerNorm([32, 32])
1727
              ret = layerNorm(x)
1728

1729
    """
1730

1731
    def __init__(self,
1732
                 normalized_shape,
1733 1734 1735 1736 1737
                 scale=True,
                 shift=True,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1738 1739 1740 1741 1742
                 act=None,
                 dtype='float32'):
        super(LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = [normalized_shape]
H
hong 已提交
1743

1744
        self._normalized_shape = list(normalized_shape)
1745 1746 1747 1748 1749 1750
        self._scale = scale
        self._shift = shift
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
1751 1752
        self._dtype = dtype
        param_shape = [np.prod(self._normalized_shape)]
1753
        if self._scale:
1754
            self.weight = self.create_parameter(
1755 1756 1757 1758
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(1.0))
1759 1760
        else:
            if self._param_attr:
T
tianshuo78520a 已提交
1761
                logging.warn("param_attr are only available with scale is True")
1762
            self.weight = None
1763

1764 1765
        if self._shift:
            assert self._bias_attr is not False
1766
            self.bias = self.create_parameter(
1767 1768 1769 1770
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True)
1771 1772
        else:
            if self._bias_attr:
T
tianshuo78520a 已提交
1773
                logging.warn("bias_attr are only available with shift is True")
1774
            self.bias = None
1775 1776

    def forward(self, input):
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
        input_shape = list(input.shape)
        input_ndim = len(input_shape)
        normalized_ndim = len(self._normalized_shape)
        self._begin_norm_axis = input_ndim - normalized_ndim
        if input_ndim < normalized_ndim or input_shape[
                self._begin_norm_axis:] != self._normalized_shape:
            str_normalized_shape = str(self._normalized_shape)
            raise ValueError(
                'Given normalized_shape is ' + str_normalized_shape +
                ', expected input with shape [*, ' + str_normalized_shape[
                    1:] + ', but got input shape ' + str(input_shape))
1788 1789 1790 1791 1792 1793 1794 1795

        if in_dygraph_mode():
            pre_act, _, _ = core.ops.layer_norm(
                input, self.weight, self.bias, 'epsilon', self._epsilon,
                'begin_norm_axis', self._begin_norm_axis)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act)

1796 1797 1798
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'LayerNorm')

1799
        inputs = dict()
1800
        inputs['X'] = [input]
1801
        if self._scale:
1802
            inputs['Scale'] = [self.weight]
1803
        if self._shift:
1804 1805 1806 1807 1808 1809
            inputs['Bias'] = [self.bias]
        attrs = {
            "epsilon": self._epsilon,
            "begin_norm_axis": self._begin_norm_axis
        }

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
        # create output
        mean_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        layer_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        self._helper.append_op(
            type="layer_norm",
            inputs=inputs,
            outputs={
                "Y": layer_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={
                "epsilon": self._epsilon,
                "begin_norm_axis": self._begin_norm_axis
            })

1831
        return self._helper.append_activation(layer_norm_out, act=self._act)
1832 1833


M
minqiyang 已提交
1834 1835 1836
class GRUUnit(layers.Layer):
    """
    **GRU unit layer**
D
DuYao 已提交
1837 1838 1839 1840 1841
    
    It creates a callable object from GRUUnit class.
    If origin_mode is True, then the equation of a gru step is from paper
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical 
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
M
minqiyang 已提交
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

D
DuYao 已提交
1852
    If origin_mode is False, then the equation of a gru step is from paper
M
minqiyang 已提交
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)


    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.

1878
    Parameters:
L
lujun 已提交
1879
        size (int): The input dimension value.
D
DuYao 已提交
1880 1881 1882 1883 1884 1885 1886 1887 1888
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
            hidden-hidden weight matrix. 
            
            **Note**:
    
                1. The shape of the weight matrix is :math:`[T, 3*D]`, where D is the hidden size.
                2. All elements in the weight matrix can be divided into two parts. The first 
                   part are weights of the update gate and reset gate with shape :math:`[D, 2*D]`, 
                   and the second part are weights for candidate hidden state with shape :math:`[D, D]`.
M
minqiyang 已提交
1889 1890 1891 1892


            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
1893 1894 1895 1896
            is not set, the parameter is initialized with Xavier. The default 
            value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias
            of GRU.Note that the bias with :math:`[1, 3*D]` concatenates
M
minqiyang 已提交
1897 1898 1899 1900 1901
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
            bias_attr. If the Initializer of the bias_attr is not set, the bias
D
DuYao 已提交
1902
            is initialized zero. The default value is None.
L
lujun 已提交
1903
        activation (str): The activation type for cell (actNode).
D
DuYao 已提交
1904
                             The default value is 'tanh'.
L
lujun 已提交
1905
        gate_activation (str): The activation type for gates (actGate).
D
DuYao 已提交
1906 1907 1908
                                  The default value is 'sigmoid'.
        dtype(str): The dtype of the layers. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
M
minqiyang 已提交
1909

D
DuYao 已提交
1910 1911 1912 1913
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
1914

M
minqiyang 已提交
1915
    Returns:
D
DuYao 已提交
1916 1917 1918 1919
        tuple: The hidden value, reset-hidden value and gate values. The hidden value
        is a 2-D tensor with shape  :math:`[T, D]` . The reset-hidden value is a
        2-D tensor with shape  :math:`[T, D]` . The gate value is a 2-D tensor with 
        shape  :math:`[T, 3*D]`.
L
lujun 已提交
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy

          lod = [[2, 4, 3]]
          D = 5
          T = sum(lod[0])

D
DuYao 已提交
1933
          input = numpy.random.rand(T, 3 * D).astype('float32')
L
lujun 已提交
1934 1935 1936
          hidden_input = numpy.random.rand(T, D).astype('float32')
          with fluid.dygraph.guard():
              x = numpy.random.random((3, 32, 32)).astype('float32')
1937
              gru = fluid.dygraph.GRUUnit(size=D * 3)
L
lujun 已提交
1938 1939 1940
              dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))

M
minqiyang 已提交
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
    """

    def __init__(self,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 activation='tanh',
                 gate_activation='sigmoid',
                 origin_mode=False,
                 dtype='float32'):
1951
        super(GRUUnit, self).__init__()
1952
        self._bias_attr = bias_attr
M
minqiyang 已提交
1953 1954 1955 1956 1957
        activation_dict = dict(
            identity=0,
            sigmoid=1,
            tanh=2,
            relu=3, )
H
Hongyu Liu 已提交
1958 1959
        self.activation = activation_dict[activation]
        self.gate_activation = activation_dict[gate_activation]
M
minqiyang 已提交
1960

M
minqiyang 已提交
1961
        self._dtype = dtype
M
minqiyang 已提交
1962 1963
        size = size // 3
        # create weight
1964
        self.weight = self.create_parameter(
M
minqiyang 已提交
1965
            attr=param_attr, shape=[size, 3 * size], dtype=dtype)
M
minqiyang 已提交
1966 1967

        # create bias
M
minqiyang 已提交
1968
        bias_size = [1, 3 * size]
1969
        self._bias_size = bias_size
1970
        self.bias = self.create_parameter(
M
minqiyang 已提交
1971
            attr=bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
M
minqiyang 已提交
1972

M
minqiyang 已提交
1973
    def forward(self, input, hidden):
1974 1975 1976 1977 1978 1979
        if in_dygraph_mode():
            gate, reset_hidden_pre, updated_hidden = core.ops.gru_unit(
                input, hidden, self.weight, self.bias, 'activation',
                self.activation, 'gate_activation', self.gate_activation)
            return updated_hidden, reset_hidden_pre, gate

1980 1981 1982 1983
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'GRUUnit')
        check_variable_and_dtype(hidden, 'hidden', ['float32', 'float64'],
                                 'GRUUnit')
1984 1985 1986 1987 1988
        inputs = {
            'Input': [input],
            'HiddenPrev': [hidden],
            'Weight': [self.weight]
        }
1989
        if self.bias is not None:
1990
            inputs['Bias'] = [self.bias]
M
minqiyang 已提交
1991 1992 1993 1994 1995
        gate = self._helper.create_variable_for_type_inference(self._dtype)
        reset_hidden_pre = self._helper.create_variable_for_type_inference(
            self._dtype)
        updated_hidden = self._helper.create_variable_for_type_inference(
            self._dtype)
M
minqiyang 已提交
1996 1997 1998 1999 2000 2001 2002 2003 2004
        self._helper.append_op(
            type='gru_unit',
            inputs=inputs,
            outputs={
                'Gate': gate,
                'ResetHiddenPrev': reset_hidden_pre,
                'Hidden': updated_hidden,
            },
            attrs={
H
Hongyu Liu 已提交
2005 2006
                'activation': self.activation,
                'gate_activation': self.gate_activation,
M
minqiyang 已提交
2007 2008 2009
            })

        return updated_hidden, reset_hidden_pre, gate
2010 2011 2012 2013


class NCE(layers.Layer):
    """
2014 2015 2016 2017 2018
    This interface is used to construct a callable object of the ``NCE`` class.
    For more details, refer to code examples.
    It implements the function of the ``NCE`` loss function.
    By default this function uses a uniform distribution for sampling, and it
    compute and return the noise-contrastive estimation training loss. See
2019
    `Noise-contrastive estimation: A new estimation principle for unnormalized statistical models <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_ .
2020

2021
    Parameters:
2022 2023
        num_total_classes (int): Total number of classes in all samples.
        dim (int): Dimension of input (possibly embedding dim).
2024
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2025 2026 2027
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
2028
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of nce.
2029 2030 2031 2032
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
2033
        num_neg_samples (int, optional): The number of negative classes. The default value is 10.
T
tianshuo78520a 已提交
2034
        sampler (str, optional): The sampler used to sample class from negative classes.
2035 2036
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
2037
        custom_dist (float[], optional): A float[] with size=num_total_classes.
2038
                       It is used when sampler is set to 'custom_dist'.
2039
                       custom_dist[i] is the probability of i-th class to be sampled.
L
lujun 已提交
2040
                       Default: None.
2041 2042
        seed (int, optional): The seed used in sampler. Default: 0.
        is_sparse(bool, optional): The flag indicating whether to use sparse update. If is_sparse is True, the weight@GRAD and bias@GRAD will be changed to SelectedRows. Default: False.
2043
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2044

2045 2046
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
2047

2048 2049
        **bias** (Parameter or None): the learnable bias of this layer.
    
2050
    Returns:
2051
        None
2052 2053 2054 2055

    Examples:
        .. code-block:: python

2056 2057 2058
            import numpy as np
            import paddle.fluid as fluid

2059
            window_size = 5
2060 2061
            dict_size = 20
            label_word = int(window_size // 2) + 1
2062
            inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
            nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

            with fluid.dygraph.guard():
                words = []
                for i in range(window_size):
                    words.append(fluid.dygraph.base.to_variable(inp_word[i]))

                emb = fluid.Embedding(
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = fluid.layers.concat(input=embs3, axis=1)
2084
                nce = fluid.NCE(
2085
                             num_total_classes=dict_size,
2086
                             dim=embs3.shape[1],
2087 2088 2089 2090 2091 2092 2093
                             num_neg_samples=2,
                             sampler="custom_dist",
                             custom_dist=nid_freq_arr.tolist(),
                             seed=1,
                             param_attr='nce.w',
                             bias_attr='nce.b')

2094 2095
                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce_loss3 = nce(embs3, wl)
2096 2097 2098 2099 2100

    """

    def __init__(self,
                 num_total_classes,
2101
                 dim,
2102
                 sample_weight=None,
2103 2104 2105 2106 2107 2108
                 param_attr=None,
                 bias_attr=None,
                 num_neg_samples=None,
                 sampler="uniform",
                 custom_dist=None,
                 seed=0,
2109 2110 2111
                 is_sparse=False,
                 dtype='float32'):
        super(NCE, self).__init__()
2112 2113 2114
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._num_total_classes = num_total_classes
2115
        self._dtype = dtype
2116
        self._inputs = dict()
2117
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
        if sampler == "uniform":
            sampler = 0
        elif sampler == "log_uniform":
            sampler = 1
        elif sampler == "custom_dist":
            assert custom_dist is not None
            # assert isinstance(custom_dist, Variable)

            custom_dist_len = len(custom_dist)
            alias_probs_ = [0] * custom_dist_len
            alias_ = [0] * custom_dist_len
            bigs = []
            littles = []
            for i in range(custom_dist_len):
                normal_prob = custom_dist[i] * custom_dist_len
                if normal_prob - 1.0 > 0:
                    bigs.append((i, normal_prob))
                elif 1.0 - normal_prob > 0:
                    littles.append((i, normal_prob))
                else:
                    alias_probs_[i] = normal_prob
                    alias_[i] = -1

            while len(bigs) and len(littles):
                big = bigs.pop(0)
                little = littles.pop(0)

                big_idx = big[0]
                big_prob = big[1]

                alias_probs_[little[0]] = little[1]
                alias_[little[0]] = big_idx
                big_left = big[1] + little[1] - 1
                if big_left - 1.0 > 0:
                    bigs.append((big_idx, big_left))
                elif 1.0 - big_left > 0:
                    littles.append((big_idx, big_left))
                else:
                    alias_probs_[big_idx] = big_left
                    alias_[big_idx] = -1

            if len(bigs):
                big = bigs.pop(0)
                alias_probs_[big[0]] = 1.0
                alias_[big[0]] = -1
            if len(littles):
                little = littles.pop(0)
                alias_probs_[little[0]] = 1.0
                alias_[little[0]] = -1

            def _init_by_numpy_array(numpy_array):
                ret = self.create_parameter(
                    attr=ParamAttr(),
                    shape=numpy_array.shape,
                    dtype=numpy_array.dtype,
                    default_initializer=NumpyArrayInitializer(numpy_array))
                ret.stop_gradient = True
                return ret

            self._inputs['CustomDistProbs'] = _init_by_numpy_array(
                np.array(custom_dist).astype('float32'))
            self._inputs['CustomDistAlias'] = _init_by_numpy_array(
                np.array(alias_).astype('int32'))
            self._inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
                np.array(alias_probs_).astype('float32'))
            sampler = 2
        else:
            raise Exception("Unsupported sampler type.")

        if num_neg_samples is None:
            num_neg_samples = 10
        else:
            num_neg_samples = int(num_neg_samples)
        self._num_neg_samples = num_neg_samples
        remote_prefetch = is_sparse
        print(
            "With sparse mode, if your models has only small parameter prefetch may cause speed down"
        )
        self._attrs = {
            'num_total_classes': int(num_total_classes),
            'num_neg_samples': num_neg_samples,
            'seed': seed,
            'sampler': sampler,
            'is_sparse': is_sparse,
            'remote_prefetch': remote_prefetch
        }

2205
        self.weight = self.create_parameter(
2206 2207 2208
            attr=self._param_attr,
            shape=[self._num_total_classes, dim],
            is_bias=False,
2209
            dtype=self._dtype)
2210
        if self._bias_attr:
2211
            self.bias = self.create_parameter(
2212 2213 2214
                attr=self._bias_attr,
                shape=[self._num_total_classes, 1],
                is_bias=True,
2215
                dtype=self._dtype)
2216 2217
            self._inputs['Bias'] = self.bias
        self._inputs['Weight'] = self.weight
2218

2219
    def forward(self, input, label, sample_weight=None):
2220 2221 2222 2223
        check_variable_and_dtype(input, "input", ['float32', 'float64'], "NCE")
        check_variable_and_dtype(label, "label", ['int64'], "NCE")
        check_type(sample_weight, 'sample_weight', (Variable, type(None)),
                   'NCE')
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
        assert isinstance(input, Variable)
        assert isinstance(label, Variable)

        self._inputs['Input'] = input
        self._inputs['Label'] = label
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []

        cost = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_logits = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_labels = self._helper.create_variable_for_type_inference(
            dtype=label.dtype)

        self._helper.append_op(
            type='nce',
            inputs=self._inputs,
            outputs={
                'Cost': cost,
                'SampleLogits': sample_logits,
                'SampleLabels': sample_labels
            },
            attrs=self._attrs)
        return cost / (self._num_neg_samples + 1)


class PRelu(layers.Layer):
    """
2252 2253 2254 2255
    This interface is used to construct a callable object of the ``PRelu`` class.
    For more details, refer to code examples.
    It implements three activation methods of the ``PRelu`` activation function.

2256 2257 2258 2259 2260
    Equation:

    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)

2261
    Parameters:
L
lujun 已提交
2262
        mode (str): The mode for weight sharing. It supports all, channel
2263 2264 2265
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
S
songyouwei 已提交
2266 2267 2268
        channel (int, optional): The number of channels.
          This argument is required when mode is "channel".
          Default: None.
2269
        input_shape (list or tuple, optional): The shape of input.
S
songyouwei 已提交
2270 2271
          This argument is required when mode is "element".
          Default: None.
2272 2273
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
          weight (alpha). Default: None.
2274
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2275

2276 2277 2278
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
    
2279
    Returns:
2280
        None
2281 2282 2283 2284 2285

    Examples:

        .. code-block:: python

L
lujun 已提交
2286
          import paddle.fluid as fluid
2287
          from paddle.fluid.dygraph.base import to_variable
L
lujun 已提交
2288 2289 2290 2291
          import numpy as np

          inp_np = np.ones([5, 200, 100, 100]).astype('float32')
          with fluid.dygraph.guard():
2292
              inp_np = to_variable(inp_np)
S
songyouwei 已提交
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
              prelu0 = fluid.PRelu(
                 mode='all',
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt0 = prelu0(inp_np)
              prelu1 = fluid.PRelu(
                 mode='channel',
                 channel=200,
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt1 = prelu1(inp_np)
              prelu2 = fluid.PRelu(
                 mode='element',
2304
                 input_shape=inp_np.shape,
L
lujun 已提交
2305
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
S
songyouwei 已提交
2306
              dy_rlt2 = prelu2(inp_np)
L
lujun 已提交
2307

2308 2309
    """

S
songyouwei 已提交
2310 2311 2312 2313 2314
    def __init__(self,
                 mode,
                 channel=None,
                 input_shape=None,
                 param_attr=None,
2315
                 dtype='float32'):
2316 2317
        # need specify name_scope since snake-cased 'PRelu' is 'p_relu'
        super(PRelu, self).__init__(name_scope='prelu')
2318 2319
        self._mode = mode
        self._param_attr = param_attr
2320
        self._dtype = dtype
S
songyouwei 已提交
2321 2322 2323 2324 2325 2326
        if mode == 'all':
            self._alpha_shape = [1]
        elif mode == 'channel':
            assert isinstance(
                channel,
                int), "channel argument is required when mode is 'channel'."
2327 2328 2329
            #NOTE(zhiqiu): The _alpha_shape should be [1, channel] + [1] * len(input_shape[2:]), not [1, channel, 1, 1].
            # However, the suffix 1 in the list is useless, since the tensor is viewed as one demension array during kernel calculation. 
            # And, input_shape is not required when mode is 'channel', so it is simplified.
2330 2331
            #NOTE(zhiqiu): Revert shape to [1, channel, 1, 1] for compatibility with saved model of old version.
            self._alpha_shape = [1, channel, 1, 1]
S
songyouwei 已提交
2332 2333 2334 2335 2336 2337 2338
        elif mode == 'element':
            assert isinstance(input_shape, (
                list, tuple
            )), "input_shape argument is required when mode is 'element'."
            self._alpha_shape = [1] + list(input_shape)[1:]
        else:
            raise ValueError('mode should be one of all, channel, element.')
2339
        self.weight = self.create_parameter(
2340 2341 2342 2343 2344 2345 2346
            attr=self._param_attr,
            shape=self._alpha_shape,
            dtype='float32',
            is_bias=False,
            default_initializer=Constant(1.0))

    def forward(self, input):
2347
        check_variable_and_dtype(input, 'input', ['float32'], 'PRelu')
2348 2349 2350 2351
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="prelu",
            inputs={"X": input,
2352
                    'Alpha': self.weight},
2353 2354 2355 2356 2357 2358 2359
            attrs={"mode": self._mode},
            outputs={"Out": out})
        return out


class BilinearTensorProduct(layers.Layer):
    """
2360 2361 2362 2363
    :alias_main: paddle.nn.BilinearTensorProduct
	:alias: paddle.nn.BilinearTensorProduct,paddle.nn.layer.BilinearTensorProduct,paddle.nn.layer.common.BilinearTensorProduct
	:old_api: paddle.fluid.dygraph.BilinearTensorProduct

2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
    **Add Bilinear Tensor Product Layer**

    This layer performs bilinear tensor product on two inputs.
    For example:

    .. math::
      out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1

    In this formula:
     - :math:`x`: the first input contains M elements, shape is [batch_size, M].
     - :math:`y`: the second input contains N elements, shape is [batch_size, N].
     - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
D
DuYao 已提交
2377
     - :math:`y^\mathrm{T}`: the transpose of :math:`y`.
2378

2379
    Parameters:
2380 2381 2382 2383 2384
       input1_dim (int): The dimension of each first input.
       input2_dim (int): The dimension of each second input.
       output_dim (int): The dimension of output of this layer.
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
D
DuYao 已提交
2385 2386 2387 2388
       act (str, optional): Activation to be applied to the output of this layer. The default value is None.
       param_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of 
           this layer. The default value is None.
       bias_attr (ParamAttr, optional): The parameter attribute for the bias
2389
           of this layer. If it is set to False, no bias will be added to the output units.
D
DuYao 已提交
2390
           If it is set to None, the bias is initialized zero. The default value is None.
2391
       dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2392

D
DuYao 已提交
2393 2394 2395 2396
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
2397

2398 2399 2400 2401 2402 2403
    Returns:
       Variable: A 2-D Tensor of shape [batch_size, size].

    Examples:
       .. code-block:: python

2404 2405 2406 2407 2408 2409 2410
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             layer1 = numpy.random.random((5, 5)).astype('float32')
             layer2 = numpy.random.random((5, 4)).astype('float32')
             bilinearTensorProduct = fluid.dygraph.nn.BilinearTensorProduct(
2411
                    input1_dim=5, input2_dim=4, output_dim=1000)
2412 2413
             ret = bilinearTensorProduct(fluid.dygraph.base.to_variable(layer1),
                                fluid.dygraph.base.to_variable(layer2))
2414 2415 2416
    """

    def __init__(self,
2417 2418 2419
                 input1_dim,
                 input2_dim,
                 output_dim,
2420 2421 2422
                 name=None,
                 act=None,
                 param_attr=None,
2423 2424 2425
                 bias_attr=None,
                 dtype='float32'):
        super(BilinearTensorProduct, self).__init__()
2426 2427 2428 2429
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
        self._name = name
2430 2431 2432
        self._input1_dim = input1_dim
        self._input2_dim = input2_dim
        self._output_dim = output_dim
2433
        self._inputs = dict()
2434
        self._dtype = dtype
2435

2436
        param_shape = [self._output_dim, self._input1_dim, self._input2_dim]
2437
        self.weight = self.create_parameter(
2438 2439 2440 2441
            attr=self._param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False)
2442
        bias_size = [1, self._output_dim]
2443
        self.bias = self.create_parameter(
2444 2445 2446 2447
            attr=self._bias_attr,
            shape=bias_size,
            dtype=self._dtype,
            is_bias=True)
2448

2449 2450 2451 2452
    @deprecated(
        since="2.0.0",
        update_to="paddle.nn.Bilinear",
        reason="New name and new args in Bilinear, easier to use.")
2453
    def forward(self, x, y):
2454 2455 2456 2457
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'BilinearTensorProduct')
        check_variable_and_dtype(y, 'y', ['float32', 'float64'],
                                 'BilinearTensorProduct')
2458
        self._inputs = {"X": x, "Y": y, "Weight": self.weight}
2459
        if self.bias is not None:
2460
            self._inputs["Bias"] = self.bias
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
        if self._name is not None:
            out = self._helper.create_variable(
                name=".".join([self.full_name(), self._name]),
                dtype=self._dtype,
                persistable=False)
        else:
            out = self._helper.create_variable(
                dtype=self._dtype, persistable=False)
        self._helper.append_op(
            type="bilinear_tensor_product",
            inputs=self._inputs,
            outputs={"Out": out})

        # add activation
2475
        return self._helper.append_activation(out, act=self._act)
2476 2477 2478 2479


class Conv2DTranspose(layers.Layer):
    """
2480 2481
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
    For more details, refer to code examples.
2482
    The convolution2D transpose layer calculates the output based on the input,
2483 2484 2485
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
2486 2487
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
2488 2489
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
2490 2491 2492
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2493 2494
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
2495 2496 2497 2498 2499 2500 2501 2502 2503

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

2504 2505
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
2506
    * :math:`\\ast`: Convolution operation.
2507
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

2532
    Parameters:
2533
        num_channels(int): The number of channels in the input image.
2534
        num_filters(int): The number of the filter. It is as same as the output
2535
            feature map.
2536 2537 2538
        filter_size(int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
2539
        output_size(int or tuple, optional): The output image size. If output size is a
2540 2541 2542
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
L
lujun 已提交
2543
            should follow the formula above. Default: None.
2544
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
2545
            contain two integers, (padding_H, padding_W). Otherwise, the
2546 2547
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
2548
            contain two integers, (stride_H, stride_W). Otherwise, the
2549 2550
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
2551
            contain two integers, (dilation_H, dilation_W). Otherwise, the
2552 2553
            dilation_H = dilation_W = dilation. Default: 1.
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
2554 2555 2556 2557
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
2558 2559
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2560 2561 2562
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
2563
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
2564 2565 2566 2567
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2568
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
2569
            library is installed. Default: True.
2570
        act (str, optional): Activation type, if it is set to None, activation is not appended.
2571
            Default: None.
2572
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2573

2574 2575
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2576

2577
        **bias** (Parameter or None): the learnable bias of this layer.
2578

2579 2580
    Returns:
        None
2581 2582 2583 2584

    Examples:
       .. code-block:: python

2585
          import paddle.fluid as fluid
2586
          import numpy as np
2587 2588

          with fluid.dygraph.guard():
2589
              data = np.random.random((3, 32, 32, 5)).astype('float32')
2590
              conv2DTranspose = fluid.dygraph.nn.Conv2DTranspose(
2591
                    num_channels=32, num_filters=2, filter_size=3)
2592 2593
              ret = conv2DTranspose(fluid.dygraph.base.to_variable(data))

2594 2595 2596
    """

    def __init__(self,
2597
                 num_channels,
2598
                 num_filters,
2599
                 filter_size,
2600 2601 2602 2603 2604 2605 2606 2607
                 output_size=None,
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
2608 2609 2610
                 act=None,
                 dtype='float32'):
        super(Conv2DTranspose, self).__init__()
2611 2612 2613
        assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
        self._param_attr = param_attr
        self._bias_attr = bias_attr
2614
        self._act = act
2615
        self._groups = groups
2616
        self._num_channels = num_channels
2617 2618 2619 2620 2621 2622 2623
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._padding = padding
        self._stride = stride
        self._dilation = dilation
        self._filter_size = filter_size
        self._output_size = output_size
2624
        self._dtype = dtype
2625

2626 2627 2628
        if (self._num_channels == self._groups and
                self._num_filters == self._num_channels and
                not self._use_cudnn):
2629
            self._op_type = 'depthwise_conv2d_transpose'
2630 2631
        else:
            self._op_type = 'conv2d_transpose'
2632 2633 2634 2635 2636

        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._stride = utils.convert_to_list(self._stride, 2, 'stride')
        self._dilation = utils.convert_to_list(self._dilation, 2, 'dilation')

2637 2638
        self._filter_size = utils.convert_to_list(
            self._filter_size, 2, 'conv2d_transpose.filter_size')
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649

        if self._output_size is None:
            self._output_size = []
        elif isinstance(self._output_size, list) or isinstance(
                self._output_size, int):
            self._output_size = utils.convert_to_list(self._output_size, 2,
                                                      'output_size')
        else:
            raise ValueError("output_size should be list or int")
        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._groups = 1 if self._groups is None else self._groups
2650
        filter_shape = [self._num_channels, self._num_filters // self._groups
2651 2652
                        ] + self._filter_size

2653
        self.weight = self.create_parameter(
2654
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
2655

2656
        self.bias = self.create_parameter(
2657 2658 2659 2660 2661
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2662
    def forward(self, input):
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
        if in_dygraph_mode():
            op = getattr(core.ops, self._op_type)
            out = op(input, self.weight, 'output_size', self._output_size,
                     'strides', self._stride, 'paddings', self._padding,
                     'dilations', self._dilation, 'groups', self._groups,
                     'use_cudnn', self._use_cudnn)
            pre_bias = out
            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, self.bias,
                                                            1)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act)

2675 2676 2677 2678
        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'],
                                 "Conv2DTranspose")

2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
        inputs = {'Input': [input], 'Filter': [self.weight]}
        attrs = {
            'output_size': self._output_size,
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups,
            'use_cudnn': self._use_cudnn
        }

2689 2690 2691 2692
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        self._helper.append_op(
            type=self._op_type,
2693
            inputs=inputs,
2694
            outputs={'Output': pre_bias},
2695
            attrs=attrs)
2696

2697
        if self.bias is not None:
2698 2699 2700 2701 2702
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
2703
                        'Y': [self.bias]},
2704 2705 2706 2707 2708 2709
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        out = self._helper.append_activation(pre_act, act=self._act)
2710 2711 2712 2713 2714 2715 2716 2717 2718
        return out


class SequenceConv(layers.Layer):
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.

2719
    Parameters:
L
lujun 已提交
2720
        name_scope(str): The name of this class.
2721
        num_filters (int): number of filters.
L
lujun 已提交
2722 2723 2724
        filter_size (int): the filter size (H and W). Default: 3.
        filter_stride (int): stride of the filter. Default: 1.
        padding (bool|None): if True, add paddings. Default: None
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.

2737 2738 2739 2740
    Attributes:
        weight (Parameter): the learnable weights of filters of this layer.
        bias (Parameter|None): the learnable bias of this layer.

2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
    Returns:
        Variable: output of sequence_conv
    """

    def __init__(self,
                 name_scope,
                 num_filters,
                 filter_size=3,
                 filter_stride=1,
                 padding=None,
                 bias_attr=None,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2754
        assert not in_dygraph_mode(
2755
        ), "SequenceConv is not supported by dynamic graph mode yet!"
2756 2757 2758 2759 2760 2761 2762
        super(SequenceConv, self).__init__(name_scope)
        self._num_filters = num_filters
        self._filter_size = filter_size
        self._filter_stride = filter_stride
        self._padding = padding
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2763
        self._act = act
2764

2765
    def _build_once(self, input):
2766 2767
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._filter_size * input.shape[1], self._num_filters]
2768
        self.weight = self.create_parameter(
2769
            attr=self._param_attr, shape=filter_shape, dtype=self._dtype)
2770

2771
        self.bias = self.create_parameter(
2772 2773 2774 2775 2776
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2777 2778 2779 2780 2781 2782
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='sequence_conv',
            inputs={
                'X': [input],
2783
                'Filter': [self.weight],
2784 2785 2786 2787 2788 2789 2790
            },
            outputs={"Out": pre_bias},
            attrs={
                'contextStride': self._filter_stride,
                'contextStart': -int(self._filter_size // 2),
                'contextLength': self._filter_size
            })
2791

2792
        if self.bias is not None:
2793 2794 2795 2796 2797
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
2798
                        'Y': [self.bias]},
2799 2800 2801 2802 2803 2804
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        return self._helper.append_activation(pre_act, act=self._act)
L
lujun 已提交
2805 2806 2807


class RowConv(layers.Layer):
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
    """
    ***Row-convolution operator***

    The row convolution is called lookahead convolution.  This operator was introduced in the following paper for DeepSpeech2:
    http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf

    The main motivation is that a bidirectional RNN, useful in DeepSpeech like speech models, learns representation for a sequence by performing a
    forward and a backward pass through the entire sequence. However, unlike
    unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online
    and low-latency setting. The lookahead convolution incorporates information
    from future subsequences in a computationally efficient manner to improve
    unidirectional recurrent neural networks. The row convolution operator is
    different from the 1D sequence convolution, and is computed as follows:

    Given an input sequence X of length t and input dimension D, and a filter (W) of size context * D.

    More details about row_conv please refer to the design document https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 .

2826
    Parameters:
L
lujun 已提交
2827
        name_scope(str): The name of this class.
2828 2829 2830
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
        param_attr (ParamAttr): Attributes of parameters, including
L
lujun 已提交
2831 2832
            name, initializer etc. Default: None.
        act (str): Non-linear activation to be applied to output variable. Default: None.
2833

2834 2835 2836
    Attributes:
        weight (Parameter): the learnable weights of this layer.

2837
    Returns:
L
lujun 已提交
2838 2839
        the output(Out) is a LodTensor, which supports variable time-length input sequences.
        The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X.
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              x = numpy.random.random((16)).astype('float32')
              rowConv = fluid.dygraph.nn.RowConv(
                    'RowConv', future_context_size=2)
              ret = rowConv(fluid.dygraph.base.to_variable(x))

    """

L
lujun 已提交
2855 2856 2857 2858 2859
    def __init__(self,
                 name_scope,
                 future_context_size,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2860
        assert not in_dygraph_mode(
2861
        ), "RowConv is not supported by dynamic graph mode yet!"
L
lujun 已提交
2862 2863 2864 2865 2866
        super(RowConv, self).__init__(name_scope)
        self._act = act
        self._param_attr = param_attr
        self._future_context_size = future_context_size

2867
    def _build_once(self, input):
L
lujun 已提交
2868 2869
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._future_context_size + 1, input.shape[1]]
2870
        self.weight = self.create_parameter(
2871 2872 2873 2874
            attr=self._param_attr,
            shape=filter_shape,
            dtype=self._dtype,
            is_bias=False)
L
lujun 已提交
2875 2876 2877 2878 2879 2880

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='row_conv',
            inputs={'X': [input],
2881
                    'Filter': [self.weight]},
L
lujun 已提交
2882 2883 2884 2885 2886 2887
            outputs={'Out': [out]})
        return self._helper.append_activation(out, act=self._act)


class GroupNorm(layers.Layer):
    """
2888 2889 2890 2891
    :alias_main: paddle.nn.GroupNorm
	:alias: paddle.nn.GroupNorm,paddle.nn.layer.GroupNorm,paddle.nn.layer.norm.GroupNorm
	:old_api: paddle.fluid.dygraph.GroupNorm

2892 2893 2894 2895 2896 2897
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
2898
        channels(int): The number of channels of input.
2899 2900 2901 2902 2903 2904 2905 2906 2907
        groups(int): The number of groups that divided from channels.
        epsilon(float, optional): The small value added to the variance to prevent
                                  division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
                                         scale :math:`g`. If it is set to False, no scale will be added to the output units.
                                         If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
                                        bias :math:`b`. If it is set to False, no bias will be added to the output units.
                                        If it is set to None, the bias is initialized zero. Default: None.
T
tianshuo78520a 已提交
2908
        act(str, optional): Activation to be applied to the output of group normalization. Default: None.
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
        data_layout(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np

          with fluid.dygraph.guard():
              x = np.random.random((8, 32, 32)).astype('float32')
2922
              groupNorm = fluid.dygraph.nn.GroupNorm(channels=32, groups=4)
2923
              ret = groupNorm(fluid.dygraph.base.to_variable(x))
L
lujun 已提交
2924 2925 2926 2927

    """

    def __init__(self,
2928
                 channels,
L
lujun 已提交
2929 2930 2931 2932 2933
                 groups,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
2934 2935 2936
                 data_layout='NCHW',
                 dtype='float32'):
        super(GroupNorm, self).__init__()
L
lujun 已提交
2937 2938 2939
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
2940
        self._channels = channels
L
lujun 已提交
2941 2942
        self._groups = groups
        self._act = act
2943
        self._dtype = dtype
L
lujun 已提交
2944 2945 2946
        if data_layout != 'NCHW':
            raise ValueError("unsupported data layout:" + data_layout)

2947
        param_shape = [self._channels]
L
lujun 已提交
2948

2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
        self.weight = self.create_parameter(
            attr=self._param_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))

        self.bias = self.create_parameter(
            attr=self._bias_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
L
lujun 已提交
2960 2961 2962

    def forward(self, input):
        inputs = {'X': input}
2963
        if self.bias is not None:
2964
            inputs['Bias'] = self.bias
2965
        if self.weight is not None:
2966
            inputs['Scale'] = self.weight
L
lujun 已提交
2967 2968

        # create output
2969
        mean_out = self._helper.create_variable_for_type_inference(
L
lujun 已提交
2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        group_norm_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
            type="group_norm",
            inputs=inputs,
            outputs={
                "Y": group_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={"epsilon": self._epsilon,
                   "groups": self._groups})

        return self._helper.append_activation(group_norm_out, self._act)


class SpectralNorm(layers.Layer):
2991
    """
2992 2993 2994 2995
    :alias_main: paddle.nn.SpectralNorm
	:alias: paddle.nn.SpectralNorm,paddle.nn.layer.SpectralNorm,paddle.nn.layer.norm.SpectralNorm
	:old_api: paddle.fluid.dygraph.SpectralNorm

2996 2997
    This interface is used to construct a callable object of the ``SpectralNorm`` class.
    For more details, refer to code examples. It implements the function of the Spectral Normalization Layer.
2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
    This layer calculates the spectral normalization value of weight parameters of
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
    Parameters. Calculations are showed as follows.

    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
    and W is the product result of remaining dimensions.

    Step 2:
T
tianshuo78520a 已提交
3008
    :attr:`power_iters` should be a positive integer, do following
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
    calculations with U and V for :attr:`power_iters` rounds.

    .. math::

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}

        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}


    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

3029
    Parameters:
3030
        weight_shape(list or tuple): The shape of weight parameter.
3031 3032 3033
        dim(int, optional): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: 0.
        power_iters(int, optional): The number of power iterations to calculate spectral norm. Default: 1.
        eps(float, optional): The epsilon for numerical stability in calculating norms. Default: 1e-12.
M
miraiwk 已提交
3034
        fix_state(bool, optional): whether to update the two vectors `u` and `v`. Default: True.
3035
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
3036
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
3037

M
miraiwk 已提交
3038

3039
    Returns:
3040
        None
3041 3042 3043 3044 3045

    Examples:
       .. code-block:: python

            import paddle.fluid as fluid
3046
            import numpy as np
3047 3048

            with fluid.dygraph.guard():
3049 3050 3051
                weight = np.random.random((2, 8, 32, 32)).astype('float32')
                spectralNorm = fluid.dygraph.nn.SpectralNorm(weight.shape, dim=1, power_iters=2)
                ret = spectralNorm(fluid.dygraph.base.to_variable(weight))
3052 3053 3054

    """

3055 3056 3057 3058 3059
    def __init__(self,
                 weight_shape,
                 dim=0,
                 power_iters=1,
                 eps=1e-12,
M
miraiwk 已提交
3060
                 fix_state=True,
3061 3062
                 dtype='float32'):
        super(SpectralNorm, self).__init__()
L
lujun 已提交
3063 3064
        self._power_iters = power_iters
        self._eps = eps
M
miraiwk 已提交
3065
        self._fix_state = fix_state
L
lujun 已提交
3066
        self._dim = dim
3067
        self._dtype = dtype
L
lujun 已提交
3068

3069 3070 3071
        self._weight_shape = list(weight_shape)
        h = self._weight_shape[self._dim]
        w = np.prod(self._weight_shape) // h
L
lujun 已提交
3072

3073
        self.weight_u = self.create_parameter(
L
lujun 已提交
3074 3075 3076 3077
            attr=ParamAttr(),
            shape=[h],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
3078
        self.weight_u.stop_gradient = True
L
lujun 已提交
3079

3080
        self.weight_v = self.create_parameter(
L
lujun 已提交
3081 3082 3083 3084
            attr=ParamAttr(),
            shape=[w],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
3085
        self.weight_v.stop_gradient = True
L
lujun 已提交
3086

M
miraiwk 已提交
3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
        if fix_state:
            self.out_weight_u = self.create_parameter(
                attr=ParamAttr(),
                shape=[h],
                dtype=self._dtype,
                default_initializer=Normal(0., 1.))
            self.out_weight_u.stop_gradient = True

            self.out_weight_v = self.create_parameter(
                attr=ParamAttr(),
                shape=[w],
                dtype=self._dtype,
                default_initializer=Normal(0., 1.))
            self.out_weight_v.stop_gradient = True
        else:
            self.out_weight_u = self.weight_u
            self.out_weight_v = self.weight_v

L
lujun 已提交
3105
    def forward(self, weight):
3106 3107
        check_variable_and_dtype(weight, "weight", ['float32', 'float64'],
                                 'SpectralNorm')
M
miraiwk 已提交
3108 3109 3110 3111
        inputs = {
            'Weight': weight, 'U': self.weight_u, 'V': self.weight_v,
            'UOut': self.out_weight_u, 'VOut': self.out_weight_v,
        }
L
lujun 已提交
3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="spectral_norm",
            inputs=inputs,
            outputs={"Out": out, },
            attrs={
                "dim": self._dim,
                "power_iters": self._power_iters,
                "eps": self._eps,
            })

        return out


class TreeConv(layers.Layer):
3127
    """
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
    This interface is used to construct a callable object of the ``TreeConv`` class.
    For more details, refer to code examples.
    Tree-Based Convolution is a kind of convolution based on tree structure.
    Tree-Based Convolution is a part of Tree-Based Convolution Neural Network(TBCNN),
    which is used to classify tree structures, such as Abstract Syntax Tree.
    Tree-Based Convolution proposed a kind of data structure called continuous binary tree,
    which regards multiway tree as binary tree.
    The paper of Tree-Based Convolution Operator is here: `tree-based convolution <https://arxiv.org/abs/1409.5718v1/>`_ .
    
    Parameters:
3138
        feature_size(int): last dimension of nodes_vector.
3139 3140 3141 3142 3143 3144 3145
        output_size(int): output feature width.
        num_filters(int, optional): number of filters, Default: 1.
        max_depth(int, optional): max depth of filters, Default: 2.
        act(str, optional): activation function, Default: tanh.
        param_attr(ParamAttr, optional): the parameter attribute for the filters, Default: None.
        bias_attr(ParamAttr, optional): the parameter attribute for the bias of this layer, Default: None.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
3146
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
3147

3148 3149
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
3150

3151
        **bias** (Parameter or None): the learnable bias of this layer.
3152

3153 3154
    Returns:
        None
L
lujun 已提交
3155

3156
    Examples:
L
lujun 已提交
3157

3158
        .. code-block:: python
3159

3160 3161
          import paddle.fluid as fluid
          import numpy
3162

3163 3164 3165 3166
          with fluid.dygraph.guard():
              nodes_vector = numpy.random.random((1, 10, 5)).astype('float32')
              edge_set = numpy.random.random((1, 9, 2)).astype('int32')
              treeConv = fluid.dygraph.nn.TreeConv(
3167
                feature_size=5, output_size=6, num_filters=1, max_depth=2)
3168
              ret = treeConv(fluid.dygraph.base.to_variable(nodes_vector), fluid.dygraph.base.to_variable(edge_set))
3169 3170
    """

L
lujun 已提交
3171
    def __init__(self,
3172
                 feature_size,
L
lujun 已提交
3173 3174 3175 3176 3177 3178
                 output_size,
                 num_filters=1,
                 max_depth=2,
                 act='tanh',
                 param_attr=None,
                 bias_attr=None,
3179 3180 3181
                 name=None,
                 dtype='float32'):
        super(TreeConv, self).__init__()
L
lujun 已提交
3182
        self._name = name
3183
        self._feature_size = feature_size
L
lujun 已提交
3184 3185 3186 3187 3188 3189
        self._output_size = output_size
        self._act = act
        self._max_depth = max_depth
        self._num_filters = num_filters
        self._bias_attr = bias_attr
        self._param_attr = param_attr
3190 3191
        self._dtype = dtype
        w_shape = [self._feature_size, 3, self._output_size, self._num_filters]
L
lujun 已提交
3192
        if self._bias_attr:
3193
            self.bias = self.create_parameter(
L
lujun 已提交
3194 3195 3196 3197
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True)
3198
        self.weight = self.create_parameter(
L
lujun 已提交
3199 3200 3201 3202 3203 3204
            attr=self._param_attr,
            shape=w_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, nodes_vector, edge_set):
3205 3206
        check_type(nodes_vector, 'nodes_vector', (Variable), 'TreeConv')
        check_type(edge_set, 'edge_set', (Variable), 'TreeConv')
L
lujun 已提交
3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
        if self._name:
            out = self.create_variable(
                name=self._name, dtype=self._dtype, persistable=False)
        else:
            out = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
        self._helper.append_op(
            type='tree_conv',
            inputs={
                'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
3218
                'Filter': self.weight
L
lujun 已提交
3219 3220 3221 3222 3223 3224 3225 3226 3227
            },
            outputs={'Out': out, },
            attrs={'max_depth': self._max_depth})
        if self._bias_attr:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [out],
3228
                        'Y': [self.bias]},
L
lujun 已提交
3229 3230 3231 3232 3233
                outputs={'Out': [pre_activation]},
                attrs={'axis': 1})
        else:
            pre_activation = out
        return self._helper.append_activation(pre_activation, act=self._act)
3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257


class Flatten(layers.Layer):
    """
    :alias_main: paddle.nn.Flatten
    :alias: paddle.nn.Flatten,paddle.nn.layer.Flatten,paddle.nn.layer.common.Flatten
    This interface is used to construct a callable object of the ``FLatten`` class.
    For more details, refer to code examples.
    It implements flatten a contiguous range of dims into a tensor.

    Equation:

    Parameters:
        start_axis(int): first dim to flatten (default = 1)
        stop_axis(int): last dim to flatten (default = -1).
    
    Returns:
        None

    Examples:

        .. code-block:: python

          import paddle
3258
          from paddle import to_variable
3259 3260 3261 3262
          import numpy as np

          inp_np = np.ones([5, 2, 3, 4]).astype('float32')
          
3263
          paddle.disable_static()
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276
          
          inp_np = to_variable(inp_np)
          flatten = paddle.nn.Flatten(start_axis=1, stop_axis=2)
          flatten_res = flatten(inp_np)

    """

    def __init__(self, start_axis=1, stop_axis=-1):
        super(Flatten, self).__init__()
        self.start_axis = start_axis
        self.stop_axis = stop_axis

    def forward(self, input):
3277 3278
        out = paddle.tensor.manipulation.flatten(
            input, start_axis=self.start_axis, stop_axis=self.stop_axis)
3279
        return out