variable_index.py 13.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import numpy as np
from . import unique_name
from . import core

MAX_INTEGER = 2**31 - 1


def replace_ellipsis(var, item):
    from .framework import Variable
    # Use slice(None) to replace Ellipsis.
    # For var, var.shape = [3,4,5,6]
    #
    #   var[..., 1:2] -> var[:, :, :, 1:2]
    #   var[0, ...] -> var[0]
    #   var[0, ..., 1:2] -> var[0, :, :, 1:2]

    item = list(item)

    # Remove Variable to skip bug when counting Ellipsis
    item_remove_var = [ele for ele in item if not isinstance(ele, Variable)]
    ell_count = item_remove_var.count(Ellipsis)
    if ell_count == 0:
        return item
    elif ell_count > 1:
        raise IndexError("An index can only have a single ellipsis ('...')")

    ell_idx = item.index(Ellipsis)

    if ell_idx == len(item) - 1:
        return item[:-1]
    else:
        item[ell_idx:ell_idx + 1] = [slice(None)] * (
            len(var.shape) - len(item) + 1)

    return item


53 54 55 56 57 58 59 60 61 62 63
def replace_none(item):
    new_item = []
    none_axes = []
    for i, slice_item in enumerate(item):
        if slice_item is None:
            none_axes.append(i)
        else:
            new_item.append(slice_item)
    return new_item, none_axes


64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
def is_integer_or_scalar_tensor(ele):
    from .framework import Variable
    if isinstance(ele, int):
        return True
    elif isinstance(ele, Variable):
        if len(ele.shape) == 1 and ele.shape[0] == 1:
            return True
    return False


def deal_attrs(attrs, attr, attr_name, tensor_attr_name, inputs, infer_flags):
    from .framework import Variable
    from .layers import utils

    if utils._contain_var(attr):
        inputs[tensor_attr_name] = utils._convert_to_tensor_list(
            attr, dtype="int64")
        for i, dim in enumerate(attr):
            if isinstance(dim, Variable):
                attrs[attr_name].append(-1)
                infer_flags[i] = -1
            else:
                attrs[attr_name].append(dim)
    else:
        attrs[attr_name] = attr


def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """
101
    from .framework import default_main_program, Variable
102 103 104 105 106 107 108 109 110

    if not isinstance(item, tuple):
        item = (item, )

    decrease_axes = []
    axes = []
    starts = []
    ends = []
    steps = []
111
    reverse_axes = []
112 113

    use_strided_slice = False
114
    item, none_axes = replace_none(item)
115
    item = replace_ellipsis(var, item)
116 117 118

    for dim, slice_item in enumerate(item):
        if is_integer_or_scalar_tensor(slice_item):
119 120 121 122 123 124 125 126 127 128 129 130 131
            if isinstance(slice_item,
                          int) and var.shape[dim] is not None and var.shape[
                              dim] >= 0 and slice_item >= var.shape[dim]:
                # For python, if users write a, b = var, the __getitem__
                # method will iterate through 0, 1, 2 ... until __getitem__
                # throws an IndexError, then stop. The var[0], var[1] will
                # be given to a, b respectively. If more values are given,
                # the unpack size would cause error.
                #
                # We raises IndexError here to support grammar like `a, b = var`
                raise IndexError(
                    "slice_item %d at dim %d should be >= 0 and < var.shape[%d]: %d"
                    % (slice_item, dim, dim, var.shape[dim]))
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
            decrease_axes.append(dim)
            start = slice_item
            step = 1
            end = slice_item + 1 if slice_item != -1 else MAX_INTEGER

        elif isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            step = 1 if step is None else step

147 148 149 150
            if start is None:
                start = 0 if step > 0 else MAX_INTEGER
            if end is None:
                end = MAX_INTEGER if step > 0 else -1
151

152
        elif isinstance(slice_item, list):
153
            is_bool_list = False
154
            for i in slice_item:
155 156 157 158 159 160
                if not isinstance(i, (int, bool)):
                    raise TypeError("Only support int or bool in index list.")

                if isinstance(i, bool):
                    is_bool_list = True
                    break
161 162 163 164 165 166

            if len(item) != 1:
                raise IndexError(
                    "When index contains a list, its length must be 1, but received {}".
                    format(len(item)))

167 168 169 170 171 172 173 174 175 176 177 178
            if is_bool_list:
                new_slice_item = []
                for idx, ele in enumerate(slice_item):
                    if not isinstance(ele, bool):
                        raise TypeError(
                            "Mixed bool index with other types is not supported."
                        )

                    if ele is True:
                        new_slice_item.append(idx)
                slice_item = new_slice_item

179 180 181
            from .layers import assign
            from ..tensor import index_select

182
            idx = assign(np.array(slice_item).astype("int32"))
183 184 185 186 187 188 189 190 191 192 193
            return index_select(var, index=idx, axis=0)

        elif isinstance(slice_item, Variable):
            if len(item) != 1:
                raise IndexError(
                    "When index contains a Tensor, its length must be 1, but received {}".
                    format(len(item)))

            from ..tensor import index_select
            return index_select(var, index=slice_item, axis=0)

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
        else:
            raise IndexError(
                "Valid index accept int or slice or ellipsis, but received {}.".
                format(slice_item))

        axes.append(dim)
        starts.append(start)
        ends.append(end)
        steps.append(step)
        use_strided_slice = True if step != 1 else use_strided_slice

    inputs = {'Input': [var]}
    attrs = {
        'axes': axes,
        'starts': [],
        'ends': [],
        'decrease_axis': decrease_axes
    }
    if use_strided_slice:
        attrs['strides'] = []

    infer_flags = [1] * len(axes)
    deal_attrs(attrs, starts, "starts", "StartsTensorList", inputs, infer_flags)
    deal_attrs(attrs, ends, "ends", "EndsTensorList", inputs, infer_flags)
    deal_attrs(attrs, steps, "strides", "StridesTensorList", inputs,
               infer_flags)
    attrs['infer_flags'] = infer_flags

    out = var
    if len(axes) > 0:
        target_block = default_main_program().current_block()
        op_type = "strided_slice" if use_strided_slice else "slice"

        slice_out_var = target_block.create_var(
            name=unique_name.generate_with_ignorable_key(var.name + "_" +
                                                         op_type),
            dtype=var.dtype)
        target_block.append_op(
            type=op_type,
            inputs=inputs,
            outputs={'Out': [slice_out_var]},
            attrs=attrs)
        out = slice_out_var

238
    if len(reverse_axes) > 0:
239
        from .layers.tensor import reverse
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
        out = reverse(out, axis=reverse_axes)

    # Deal with cases when all axes are decreased.
    # After slice, the shape of out is [1], which should have been [], but Paddle doesn't support scalar.
    # In order to ensure the correctness of the final shape of out, one dimension of out needs to be decreased.
    # For example:
    # # x.shape: (2,3,4)
    # out = x[0, 1, 1, None] # out.shape : (1)
    if len(decrease_axes) == len(var.shape):
        none_axes = none_axes[1:]

    if len(none_axes) > 0:
        # Deal with cases that decrease_axes is not empty
        # For example:
        # # x.shape: (2,3,4)
        # out = x[0, 0:2, None] # out.shape : (2, 1, 4)
        for idx, axis in enumerate(none_axes):
            l = len([i for i in decrease_axes if i < axis])
            new_axis = axis - l
            none_axes[idx] = new_axis

        # Deal with cases when all axes are decreased.
        # After slice, the shape of out is [1], which should have been [], but Paddle doesn't support scalar.
        # In order to ensure the correctness of the final shape of out, one dimension of out needs to be decreased.
        # For example:
        # # x.shape: (2,3,4)
        # out = x[0, 1, 1, None] # out.shape : (1)

        from ..tensor import unsqueeze
        out = unsqueeze(out, axis=none_axes)
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288

    return out


def _setitem_impl_(var, item, value):
    from .framework import default_main_program, Variable

    inputs = {'Input': var}

    # 1. Parse item
    if not isinstance(item, tuple):
        item = (item, )

    decrease_axes = []
    axes = []
    starts = []
    ends = []
    steps = []

Z
zyfncg 已提交
289
    item, none_axes = replace_none(item)
290 291
    item = replace_ellipsis(var, item)

Z
zyfncg 已提交
292 293
    dim = 0
    for _, slice_item in enumerate(item):
294 295 296 297 298 299 300 301 302 303 304 305
        if is_integer_or_scalar_tensor(slice_item):
            decrease_axes.append(dim)
            start = slice_item
            end = slice_item + 1 if slice_item != -1 else MAX_INTEGER
            step = 1

        elif isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
Z
zyfncg 已提交
306
                dim += 1
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
                continue

            step = 1 if step is None else step

            if not isinstance(step, Variable) and step == 0:
                raise ValueError(
                    "When assign a value to a paddle.Tensor, step can not be 0, "
                    "but received step is {}.".format(step))

            if isinstance(step, Variable) and (start is None or end is None):
                raise ValueError(
                    "When assign a value to a paddle.Tensor, it's not supported that "
                    "the start or end is None when the type of step is paddle.Tensor."
                )

            if start is None:
                start = 0 if step > 0 else MAX_INTEGER

            if end is None:
                end = MAX_INTEGER if step > 0 else (0 - MAX_INTEGER)
        else:
            raise IndexError(
Z
zyfncg 已提交
329
                "Valid index accept int, slice, ellipsis or None, but received {}.".
330 331 332 333 334 335 336
                format(slice_item))

        axes.append(dim)
        starts.append(start)
        ends.append(end)
        steps.append(step)

Z
zyfncg 已提交
337 338
        dim += 1

339 340 341 342 343
    attrs = {
        'axes': axes,
        'starts': starts,
        'ends': ends,
        'steps': steps,
Z
zyfncg 已提交
344 345
        'decrease_axes': decrease_axes,
        'none_axes': none_axes
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
    }

    from .layers import utils
    if utils._contain_var(starts):
        inputs['StartsTensorList'] = utils._convert_to_tensor_list(starts)
        del attrs['starts']
    if utils._contain_var(ends):
        inputs['EndsTensorList'] = utils._convert_to_tensor_list(ends)
        del attrs['ends']
    if utils._contain_var(steps):
        inputs['StepsTensorList'] = utils._convert_to_tensor_list(steps)
        del attrs['steps']

    # 2. Parse value
    dtype = var.dtype
    attrs['dtype'] = dtype

    from .data_feeder import convert_dtype
    #  2.1 value is an integer of float
    if isinstance(value, (int, float)):
        value = np.array([value]).astype(convert_dtype(dtype))

    #  2.2 value is a np.ndarray
    if isinstance(value, np.ndarray):
        shape = list(value.shape)
        if dtype == core.VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [bool(v) for v in value.flat]
        elif dtype == core.VarDesc.VarType.FP32:
            value_name = "fp32_values"
            values = [float(v) for v in value.flat]
        elif dtype == core.VarDesc.VarType.FP64:
            value_name = "fp64_values"
            values = [float(v) for v in value.flat]
        elif dtype == core.VarDesc.VarType.INT32:
            value_name = "int32_values"
            values = [int(v) for v in value.flat]
        elif dtype == core.VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in value.flat]
        else:
            raise TypeError(
                "When assign a numpy.ndarray, integer or float to a paddle.Tensor, "
                "the data type of the paddle.Tensor must be bool, float32, int32 or int64, but "
                "received %s." % convert_dtype(dtype))
        attrs[value_name] = values
        attrs["shape"] = shape

    elif isinstance(value, Variable):
        inputs["ValueTensor"] = value
    else:
        raise TypeError(
            "Only support to assign an integer, float, numpy.ndarray or "
            "paddle.Tensor to a paddle.Tensor, but received {}".format(
                type(value)))

    cur_block = default_main_program().current_block()
    cur_block.append_op(
        type="set_value", inputs=inputs, outputs={'Out': var}, attrs=attrs)

    return var