test_roi_align_op.py 8.6 KB
Newer Older
J
jerrywgz 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
#    Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
import math
import sys
from op_test import OpTest


class TestROIAlignOp(OpTest):
    def set_data(self):
        self.init_test_case()
        self.make_rois()
        self.calc_roi_align()
F
FDInSky 已提交
29 30 31 32 33

        self.inputs = {
            'X': self.x,
            'ROIs': (self.rois[:, 1:5], self.rois_lod),
        }
J
jerrywgz 已提交
34 35 36 37
        self.attrs = {
            'spatial_scale': self.spatial_scale,
            'pooled_height': self.pooled_height,
            'pooled_width': self.pooled_width,
38 39
            'sampling_ratio': self.sampling_ratio,
            'aligned': self.aligned,
J
jerrywgz 已提交
40 41 42 43 44
        }

        self.outputs = {'Out': self.out_data}

    def init_test_case(self):
J
jerrywgz 已提交
45
        self.batch_size = 3
J
jerrywgz 已提交
46 47 48 49 50 51 52
        self.channels = 3
        self.height = 8
        self.width = 6

        # n, c, h, w
        self.x_dim = (self.batch_size, self.channels, self.height, self.width)

53
        self.spatial_scale = 1.0 / 2.0
J
jerrywgz 已提交
54 55
        self.pooled_height = 2
        self.pooled_width = 2
J
jerrywgz 已提交
56
        self.sampling_ratio = -1
57
        self.aligned = False
J
jerrywgz 已提交
58

59
        self.x = np.random.random(self.x_dim).astype('float64')
J
jerrywgz 已提交
60 61 62 63 64 65

    def pre_calc(self, x_i, roi_xmin, roi_ymin, roi_bin_grid_h, roi_bin_grid_w,
                 bin_size_h, bin_size_w):
        count = roi_bin_grid_h * roi_bin_grid_w
        bilinear_pos = np.zeros(
            [self.channels, self.pooled_height, self.pooled_width, count, 4],
66
            np.float64)
J
jerrywgz 已提交
67
        bilinear_w = np.zeros(
68
            [self.pooled_height, self.pooled_width, count, 4], np.float64)
J
jerrywgz 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
        for ph in range(self.pooled_width):
            for pw in range(self.pooled_height):
                c = 0
                for iy in range(roi_bin_grid_h):
                    y = roi_ymin + ph * bin_size_h + (iy + 0.5) * \
                        bin_size_h / roi_bin_grid_h
                    for ix in range(roi_bin_grid_w):
                        x = roi_xmin + pw * bin_size_w + (ix + 0.5) * \
                            bin_size_w / roi_bin_grid_w
                        if y < -1.0 or y > self.height or \
                               x < -1.0 or x > self.width:
                            continue
                        if y <= 0:
                            y = 0
                        if x <= 0:
                            x = 0
                        y_low = int(y)
                        x_low = int(x)
                        if y_low >= self.height - 1:
                            y = y_high = y_low = self.height - 1
                        else:
                            y_high = y_low + 1
                        if x_low >= self.width - 1:
                            x = x_high = x_low = self.width - 1
                        else:
J
jerrywgz 已提交
94
                            x_high = x_low + 1
J
jerrywgz 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
                        ly = y - y_low
                        lx = x - x_low
                        hy = 1 - ly
                        hx = 1 - lx
                        for ch in range(self.channels):
                            bilinear_pos[ch, ph, pw, c, 0] = x_i[ch, y_low,
                                                                 x_low]
                            bilinear_pos[ch, ph, pw, c, 1] = x_i[ch, y_low,
                                                                 x_high]
                            bilinear_pos[ch, ph, pw, c, 2] = x_i[ch, y_high,
                                                                 x_low]
                            bilinear_pos[ch, ph, pw, c, 3] = x_i[ch, y_high,
                                                                 x_high]
                        bilinear_w[ph, pw, c, 0] = hy * hx
                        bilinear_w[ph, pw, c, 1] = hy * lx
                        bilinear_w[ph, pw, c, 2] = ly * hx
                        bilinear_w[ph, pw, c, 3] = ly * lx
                        c = c + 1
        return bilinear_pos, bilinear_w

    def calc_roi_align(self):
J
jerrywgz 已提交
116 117
        self.out_data = np.zeros(
            (self.rois_num, self.channels, self.pooled_height,
118
             self.pooled_width)).astype('float64')
J
jerrywgz 已提交
119

120
        offset = 0.5 if self.aligned else 0.
J
jerrywgz 已提交
121 122 123 124
        for i in range(self.rois_num):
            roi = self.rois[i]
            roi_batch_id = int(roi[0])
            x_i = self.x[roi_batch_id]
125 126 127 128 129 130 131 132 133 134
            roi_xmin = roi[1] * self.spatial_scale - offset
            roi_ymin = roi[2] * self.spatial_scale - offset
            roi_xmax = roi[3] * self.spatial_scale - offset
            roi_ymax = roi[4] * self.spatial_scale - offset

            roi_width = roi_xmax - roi_xmin
            roi_height = roi_ymax - roi_ymin
            if not self.aligned:
                roi_width = max(roi_width, 1)
                roi_height = max(roi_height, 1)
J
jerrywgz 已提交
135 136 137
            bin_size_h = float(roi_height) / float(self.pooled_height)
            bin_size_w = float(roi_width) / float(self.pooled_width)
            roi_bin_grid_h = self.sampling_ratio if self.sampling_ratio > 0 else \
138
                                 math.ceil(roi_height / self.pooled_height)
J
jerrywgz 已提交
139
            roi_bin_grid_w = self.sampling_ratio if self.sampling_ratio > 0 else \
140
                                 math.ceil(roi_width / self.pooled_width)
J
jerrywgz 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153
            count = int(roi_bin_grid_h * roi_bin_grid_w)
            pre_size = count * self.pooled_width * self.pooled_height
            bilinear_pos, bilinear_w = self.pre_calc(x_i, roi_xmin, roi_ymin,
                                                     int(roi_bin_grid_h),
                                                     int(roi_bin_grid_w),
                                                     bin_size_h, bin_size_w)
            for ch in range(self.channels):
                align_per_bin = (bilinear_pos[ch] * bilinear_w).sum(axis=-1)
                output_val = align_per_bin.mean(axis=-1)
                self.out_data[i, ch, :, :] = output_val

    def make_rois(self):
        rois = []
J
jerrywgz 已提交
154
        self.rois_lod = [[]]
J
jerrywgz 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
        for bno in range(self.batch_size):
            self.rois_lod[0].append(bno + 1)
            for i in range(bno + 1):
                x1 = np.random.random_integers(
                    0, self.width // self.spatial_scale - self.pooled_width)
                y1 = np.random.random_integers(
                    0, self.height // self.spatial_scale - self.pooled_height)

                x2 = np.random.random_integers(x1 + self.pooled_width,
                                               self.width // self.spatial_scale)
                y2 = np.random.random_integers(
                    y1 + self.pooled_height, self.height // self.spatial_scale)

                roi = [bno, x1, y1, x2, y2]
                rois.append(roi)
        self.rois_num = len(rois)
171
        self.rois = np.array(rois).astype("float64")
J
jerrywgz 已提交
172 173 174 175 176 177 178 179 180

    def setUp(self):
        self.op_type = "roi_align"
        self.set_data()

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
J
jerrywgz 已提交
181
        self.check_grad(['X'], 'Out')
S
sneaxiy 已提交
182 183


F
FDInSky 已提交
184 185 186 187 188 189 190 191 192 193 194
class TestROIAlignInLodOp(TestROIAlignOp):
    def set_data(self):
        self.init_test_case()
        self.make_rois()
        self.calc_roi_align()

        seq_len = self.rois_lod[0]

        self.inputs = {
            'X': self.x,
            'ROIs': (self.rois[:, 1:5], self.rois_lod),
195
            'RoisNum': np.asarray(seq_len).astype('int32')
F
FDInSky 已提交
196 197 198 199 200 201
        }

        self.attrs = {
            'spatial_scale': self.spatial_scale,
            'pooled_height': self.pooled_height,
            'pooled_width': self.pooled_width,
202 203
            'sampling_ratio': self.sampling_ratio,
            'aligned': self.aligned
F
FDInSky 已提交
204 205 206 207 208
        }

        self.outputs = {'Out': self.out_data}


209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
class TestROIAlignOpWithAligned(TestROIAlignOp):
    def init_test_case(self):
        self.batch_size = 3
        self.channels = 3
        self.height = 8
        self.width = 6

        # n, c, h, w
        self.x_dim = (self.batch_size, self.channels, self.height, self.width)

        self.spatial_scale = 1.0 / 2.0
        self.pooled_height = 2
        self.pooled_width = 2
        self.sampling_ratio = -1
        self.aligned = True

        self.x = np.random.random(self.x_dim).astype('float64')


S
sneaxiy 已提交
228 229
if __name__ == '__main__':
    unittest.main()