device_worker.h 20.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

H
hutuxian 已提交
17
#include <atomic>
18 19 20 21
#include <fstream>
#include <map>
#include <memory>
#include <mutex>  // NOLINT
Z
zhang wenhui 已提交
22
#include <set>
23
#include <string>
X
xujiaqi01 已提交
24 25 26 27
#include <thread>         // NOLINT
#include <unordered_map>  // NOLINT
#include <unordered_set>  // NOLINT
#include <utility>        // NOLINT
28 29 30
#include <vector>

#include "paddle/fluid/framework/data_feed.h"
31
#include "paddle/fluid/framework/executor_gc_helper.h"
T
Thunderbrook 已提交
32
#include "paddle/fluid/framework/heter_util.h"
33 34 35 36 37 38 39 40
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/trainer_desc.pb.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/operators/reader/blocking_queue.h"
#include "paddle/fluid/platform/place.h"
D
dongdaxiang 已提交
41
#include "paddle/fluid/platform/port.h"
42 43
#include "paddle/fluid/platform/timer.h"

W
wanghuancoder 已提交
44 45 46 47 48 49 50 51 52 53 54 55
namespace paddle {
namespace framework {
class LoDTensor;
class ProgramDesc;
class Scope;
class Tensor;
}  // namespace framework
namespace platform {
class DeviceContext;
}  // namespace platform
}  // namespace paddle

56
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
H
hutuxian 已提交
57 58 59
#include "paddle/fluid/platform/nccl_helper.h"
#endif

60 61 62
namespace paddle {
namespace framework {

63
std::string PrintLodTensor(Tensor* tensor, int64_t start, int64_t end);
64 65 66
std::pair<int64_t, int64_t> GetTensorBound(LoDTensor* tensor, int index);
bool CheckValidOutput(LoDTensor* tensor, size_t batch_size);

67 68
class FleetWrapper;

T
Thunderbrook 已提交
69 70 71 72
#ifdef PADDLE_WITH_PSLIB
class HeterWrapper;
#endif

73 74 75 76
class PullDenseWorker {
 public:
  virtual ~PullDenseWorker() {}
  virtual void Initialize(const TrainerDesc& param);
77 78
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  void AddStream(const gpuStream_t stream) { copy_streams_.push_back(stream); }
T
Thunderbrook 已提交
79
#endif
T
Thunderbrook 已提交
80

81 82
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) || \
    defined(PADDLE_WITH_XPU)
T
Thunderbrook 已提交
83 84 85 86 87 88
  void AddPlace(const paddle::platform::Place place) {
    places_.push_back(place);
  }

  void AddThreadScope(Scope* scope) { thread_scopes_.push_back(scope); }
#endif
89 90
  int Start();
  void Stop();
91
  void SetRootScope(Scope* scope) { root_scope_ = scope; }
92 93 94
  void IncreaseThreadVersion(int thread_id, uint64_t table_id);
  void ResetThreadVersion(uint64_t table_id);
  void Wait(std::vector<::std::future<int32_t>>* status_vec);
95
  void PullDense(bool force_update = false);
T
Thunderbrook 已提交
96
  void CreatePinVar();
T
Thunderbrook 已提交
97
  void MergeDenseParam();
98 99
  int GetThreadIdByScope(const Scope* scope);
  void SetThreadIdByScope(const Scope* scope, int tid);
100 101 102 103 104 105 106
  static std::shared_ptr<PullDenseWorker> GetInstance() {
    if (NULL == s_instance_) {
      s_instance_.reset(new paddle::framework::PullDenseWorker());
    }
    return s_instance_;
  }

107 108
  static std::shared_ptr<PullDenseWorker> s_instance_;

109
 private:
110
  PullDenseWorker() : root_scope_(NULL) {}
111 112 113 114 115 116
  void Run();
  bool CheckUpdateParam(uint64_t table_id);

 private:
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
  PullDenseWorkerParameter param_;
H
heqiaozhi 已提交
117
  DownpourWorkerParameter dwp_param_;
118 119 120
  Scope* root_scope_;
  bool running_;

D
dongdaxiang 已提交
121 122 123 124 125
  static std::map<uint64_t, uint64_t> last_versions_;
  static std::map<uint64_t, uint64_t> current_version_;
  static std::mutex mutex_for_version_;
  static std::map<uint64_t, std::vector<uint64_t>> training_versions_;
  static std::map<uint64_t, std::vector<std::string>> dense_value_names_;
126 127 128 129 130 131 132 133 134 135 136 137 138 139

  std::thread t_;
  int thread_num_;
  int sleep_time_ms_;
  int threshold_;

  std::vector<::std::future<int32_t>> pull_dense_status_;
  uint32_t pull_dense_fail_times_ = 0;
  std::vector<float> base_norm_param_;
  std::vector<float> mean_;
  std::vector<float> scale_;
  float squared_sum_epsilon_ = 1e-4;
  std::mutex mutex_for_mean_scale_;
  float total_batch_num_ = 0;
140
  std::unordered_map<const Scope*, int> scope_to_thread_id_;
T
Thunderbrook 已提交
141

142 143
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  std::vector<gpuStream_t> copy_streams_;
T
Thunderbrook 已提交
144
#endif
T
Thunderbrook 已提交
145 146
  std::vector<paddle::platform::Place> places_;
  std::vector<Scope*> thread_scopes_;
147 148 149 150 151
};

// should incorporate different type of device
class DeviceWorker {
 public:
152 153 154 155
  DeviceWorker() {
    no_cvm_ = true;
    use_cvm_ = false;
  }
156 157
  virtual ~DeviceWorker() {}
  virtual void Initialize(const TrainerDesc& desc) = 0;
H
hutuxian 已提交
158
  virtual void InitRandomDumpConfig(const TrainerDesc& desc);
159 160
  virtual void SetDeviceIndex(int tid) = 0;
  virtual void TrainFiles() = 0;
D
dongdaxiang 已提交
161
  virtual void PrintFetchVars() = 0;
162 163 164 165 166
  virtual void TrainFilesWithProfiler() = 0;
  virtual void CreateDeviceResource(const ProgramDesc& main_prog) = 0;
  // will make this zero copy in the future
  virtual void BindingDataFeedMemory() = 0;
  virtual void SetRootScope(Scope* root_scope);
J
jiaqi 已提交
167
  virtual void SetDataFeed(DataFeed* data_feed);
T
Thunderbrook 已提交
168 169
  virtual void SetWorkerNum(int num) {}
  virtual void CacheProgram(const ProgramDesc& main_program) {}
T
Thunderbrook 已提交
170
  virtual void ProduceTasks() {}
T
Thunderbrook 已提交
171
  virtual void GetXpuOpIndex() {}
T
Thunderbrook 已提交
172
  virtual void Schedule(int taskid) {}
173 174 175
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  virtual void SetStream(const gpuStream_t stream) {}
  virtual void SetEvent(const gpuEvent_t event) {}
T
Thunderbrook 已提交
176
#endif
H
hutuxian 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
  virtual void SetNeedDumpField(bool need_dump_field) {
    need_dump_field_ = need_dump_field;
  }
  virtual void SetNeedDumpParam(bool need_dump_param) {
    need_dump_param_ = need_dump_param;
  }
  virtual void SetDumpFieldVector(const std::vector<std::string>& dump_fields) {
    dump_fields_ = &dump_fields;
  }
  virtual void SetDumpParamVector(const std::vector<std::string>& dump_param) {
    dump_param_ = &dump_param;
  }
  virtual void SetChannelWriter(ChannelObject<std::string>* queue) {
    writer_.Reset(queue);
  }
192 193 194
  virtual void SetPlace(const paddle::platform::Place& place) {
    place_ = place;
  }
195 196 197
  virtual void SetReaderPlace(const paddle::platform::Place& place) {
    device_reader_->SetPlace(place);
  }
198 199 200
  virtual void SetDeviceContext(platform::DeviceContext* dev_ctx) {
    dev_ctx_ = dev_ctx;
  }
201
  virtual Scope* GetThreadScope() { return thread_scope_; }
T
Thunderbrook 已提交
202
  DataFeed* device_reader_ = nullptr;
203 204

 protected:
H
hutuxian 已提交
205 206 207
  virtual void DumpParam(const Scope& scope, const int batch_id);
  virtual void DumpField(const Scope& scope, int dump_mode,
                         int dump_interval = 10000);
J
jiaqi 已提交
208
  Scope* root_scope_ = nullptr;
209
  Scope* thread_scope_;
210
  paddle::platform::Place place_;
T
tangwei12 已提交
211
  int64_t batch_num_ = 0;
D
dongdaxiang 已提交
212
  FetchConfig fetch_config_;
213
  bool use_cvm_;
214
  bool no_cvm_;
215
  bool scale_sparse_gradient_with_batch_size_;
T
Thunderbrook 已提交
216
  TrainerDesc trainer_desc_;
H
hutuxian 已提交
217 218 219 220 221 222

  // dump params or grads for debug
  bool need_dump_param_;
  bool need_dump_field_;
  const std::vector<std::string>* dump_param_;
  const std::vector<std::string>* dump_fields_;
223
  std::vector<std::string> all_param_;
H
hutuxian 已提交
224 225 226 227

  int dump_mode_ = 0;
  int dump_interval_ = 10000;
  ChannelWriter<std::string> writer_;
228
  platform::DeviceContext* dev_ctx_ = nullptr;
229 230 231 232 233 234 235 236 237
};

class CPUWorkerBase : public DeviceWorker {
 public:
  CPUWorkerBase() {}
  virtual ~CPUWorkerBase() {}
  virtual void SetDeviceIndex(int tid) { thread_id_ = tid; }
  virtual void TrainFiles() = 0;
  virtual void TrainFilesWithProfiler() {}
D
dongdaxiang 已提交
238
  virtual void PrintFetchVars() {}
239 240 241 242 243 244 245 246 247
  virtual void CreateDeviceResource(const ProgramDesc& main_prog) {}

 protected:
  int thread_id_;
};

class HogwildWorker : public CPUWorkerBase {
 public:
  HogwildWorker() {}
248 249 250 251 252 253
  virtual ~HogwildWorker() {
    for (OperatorBase* op : ops_) {
      delete op;
    }
    std::vector<OperatorBase*>().swap(ops_);
  }
D
dongdaxiang 已提交
254
  virtual void Initialize(const TrainerDesc& desc);
255 256
  virtual void TrainFiles();
  virtual void TrainFilesWithProfiler();
D
dongdaxiang 已提交
257
  virtual void PrintFetchVars();
258 259
  virtual void CreateDeviceResource(const ProgramDesc& main_prog);
  virtual void BindingDataFeedMemory();
260 261
  template <typename T>
  void SetZero(LoDTensor* tensor, LoDTensor* root_tensor, int tensor_dim);
262 263 264 265

 protected:
  void CreateThreadOperators(const ProgramDesc& program);
  void CreateThreadScope(const ProgramDesc& program);
266

267 268
  std::vector<std::string> op_names_;
  std::vector<OperatorBase*> ops_;
269
  bool thread_barrier_;
270
  // Scope* thread_scope_;
271 272
  HogwildWorkerParameter param_;
  std::vector<std::string> skip_ops_;
273
  std::map<std::string, int> stat_var_name_map_;
274 275 276 277 278 279
};

class DownpourWorker : public HogwildWorker {
 public:
  DownpourWorker() {}
  virtual ~DownpourWorker() {}
280
  virtual void Initialize(const TrainerDesc& desc);
281
  virtual void TrainFiles();
282
  virtual void TrainFilesWithProfiler();
283 284 285 286 287 288 289

 protected:
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
  void FillSparseValue(size_t table_id);
  void PushGradients();
  void CollectLabelInfo(size_t table_id);
290
  void AdjustInsWeight();
X
xujiaqi01 已提交
291 292 293
  void CopySparseTable();
  void CopyDenseTable();
  void CopyDenseVars();
294

295
  DownpourWorkerParameter param_;
296 297 298 299
  // copy table
  CopyTableConfig copy_table_config_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_sparse_tables_;
  std::unordered_map<uint64_t, std::unordered_set<uint64_t>> feasign_set_;
300 301
  // actually pushed feasign of each table
  std::map<uint64_t, std::vector<uint64_t>> sparse_push_keys_;
302
  std::map<uint64_t, std::vector<std::string>> sparse_key_names_;
303 304 305 306
  // feasign
  std::map<uint64_t, std::vector<uint64_t>> features_;
  // feasign embedding
  std::map<uint64_t, std::vector<std::vector<float>>> feature_values_;
307 308 309 310 311 312 313 314 315
  std::map<uint64_t, std::vector<std::string>> sparse_value_names_;
  // adjust ins weight
  AdjustInsWeightConfig adjust_ins_weight_config_;
  // check nan and inf during training
  std::vector<std::string> check_nan_var_names_;
  bool need_to_push_sparse_;
  // feasign stats
  std::map<uint64_t, std::vector<float>> feature_labels_;
  std::map<uint64_t, std::vector<std::string>> sparse_grad_names_;
316 317
  // feasign embedding gradient
  std::map<uint64_t, std::vector<std::vector<float>>> feature_grads_;
318 319 320 321 322 323
  std::vector<::std::future<int32_t>> push_sparse_status_;
  bool dump_slot_;
  bool need_to_push_dense_;
  std::map<uint64_t, std::vector<std::string>> dense_grad_names_;
  float scale_datanorm_;
  std::vector<::std::future<int32_t>> push_dense_status_;
324 325
  // skipped ops
  std::vector<std::string> skip_ops_;
326 327 328 329 330
  // just save the value in param_ for easy access
  std::map<uint64_t, std::string> label_var_name_;
  std::map<uint64_t, std::vector<std::string>> dense_value_names_;
  std::map<uint64_t, uint64_t> table_dependency_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_dense_tables_;
Z
zhang wenhui 已提交
331 332 333 334
  // multitask
  std::map<int32_t, uint64_t> cond2table_map_;
  std::set<uint64_t> condvalue_set_;
  bool flag_partial_push_;
335 336 337 338 339 340

 private:
  // std::vector<std::string> dump_param_;
  // just save the value in param_ for easy access
  // std::map<uint64_t, std::string> label_var_name_;
  // std::map<uint64_t, std::vector<std::string>> dense_value_names_;
341 342

  std::shared_ptr<PullDenseWorker> _pull_dense_worker;
343 344

  std::vector<float> nid_show_;
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
  // std::map<uint64_t, uint64_t> table_dependency_;
  // std::vector<std::pair<uint64_t, uint64_t>> copy_dense_tables_;
};

class DownpourWorkerOpt : public DownpourWorker {
 public:
  DownpourWorkerOpt() {}
  virtual ~DownpourWorkerOpt() {}
  virtual void CreateDeviceResource(const ProgramDesc& main_prog);
  virtual void Initialize(const TrainerDesc& desc);
  virtual void TrainFiles();

 protected:
  void CreateThreadOperatorsWithRerank(const ProgramDesc& program);
  std::vector<std::vector<OperatorBase*>> loss_ops_;
  std::vector<std::vector<std::string>> loss_op_names_;
  std::vector<std::string> loss_names_;
  std::string async_wait_name_;
  int async_index_ = -1;
  uint64_t async_tid_ = 0;
365 366
};

T
Thunderbrook 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
#ifdef PADDLE_WITH_PSLIB
class HeterCpuWorker : public HogwildWorker {
 public:
  HeterCpuWorker() {}
  virtual ~HeterCpuWorker() {}
  virtual void Initialize(const TrainerDesc& desc);
  virtual void TrainFiles();
  virtual void TrainFilesWithProfiler();
  virtual void SetNeedDump(bool need_dump_field);
  virtual void SetChannelWriter(ChannelObject<std::string>* queue);
  virtual void SetWorkerNum(int num) { worker_num_ = num; }
  virtual void Schedule(int taskid);
  virtual void JumpContext(std::shared_ptr<HeterTask> task);
  virtual void CacheProgram(const ProgramDesc& main_program) {
    new (&program_) ProgramDesc(main_program);
  }
  virtual void GetXpuOpIndex();

 protected:
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
  std::shared_ptr<paddle::framework::HeterWrapper> heter_ptr_;
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
  void FillSparseValue(std::shared_ptr<HeterTask> task, size_t table_id);
  void PushGradients();
  void CollectLabelInfo(std::shared_ptr<HeterTask> task, size_t table_id);
  void AdjustInsWeight(std::shared_ptr<HeterTask> task);
  void DumpParam();
  void CopySparseTable();
  void CopyDenseTable();
  void CopyDenseVars();

 private:
  int mpi_rank_;
  int worker_num_;
  int xpu_begin_op_index_;
  int xpu_end_op_index_;
  ProgramDesc program_;
  HeterObjectPool<HeterTask> object_pool_;
  HeterList<int, std::shared_ptr<HeterTask>> run_queue_;
  HeterList<int, std::shared_ptr<HeterTask>> wait_queue_;
  bool need_dump_param_;
  std::vector<std::string> dump_param_;
  bool need_to_push_dense_;
  bool need_dump_field_;
  bool dump_slot_;
  bool need_to_push_sparse_;
  std::vector<std::string> dump_fields_;
  ChannelWriter<std::string> writer_;
  DownpourWorkerParameter param_;
  float scale_datanorm_;
  // just save the value in param_ for easy access
  std::map<uint64_t, std::string> label_var_name_;
  std::map<uint64_t, std::vector<std::string>> sparse_key_names_;
  std::map<uint64_t, std::vector<std::string>> sparse_value_names_;
  std::map<uint64_t, std::vector<std::string>> sparse_grad_names_;
  std::map<uint64_t, std::vector<std::string>> dense_value_names_;
  std::map<uint64_t, std::vector<std::string>> dense_grad_names_;
  platform::Place root_place_;
  // actually pushed feasign of each table
  std::map<uint64_t, std::vector<uint64_t>> sparse_push_keys_;

  // skipped ops
  std::vector<std::string> skip_ops_;

  std::vector<::std::future<int32_t>> push_sparse_status_;
  std::vector<::std::future<int32_t>> push_dense_status_;

  // adjust ins weight
  AdjustInsWeightConfig adjust_ins_weight_config_;
  std::vector<float> nid_show_;
  // check nan and inf during training
  std::vector<std::string> check_nan_var_names_;
  // copy table
  CopyTableConfig copy_table_config_;
  std::map<uint64_t, uint64_t> table_dependency_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_sparse_tables_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_dense_tables_;
  std::unordered_map<uint64_t, std::unordered_set<uint64_t>> feasign_set_;
};
#endif

448 449
#if (defined PADDLE_WITH_NCCL || defined PADDLE_WITH_RCCL) && \
    (defined PADDLE_WITH_PSLIB)
T
Thunderbrook 已提交
450 451 452 453 454 455
class PSGPUWorker : public HogwildWorker {
 public:
  PSGPUWorker() {}
  virtual ~PSGPUWorker() {}
  virtual void Initialize(const TrainerDesc& desc);
  virtual void TrainFiles();
456
  virtual void TrainFilesWithProfiler();
T
Thunderbrook 已提交
457 458 459 460 461
  virtual void SetChannelWriter(ChannelObject<std::string>* queue);
  virtual void SetWorkerNum(int num) { worker_num_ = num; }
  virtual void CacheProgram(const ProgramDesc& main_program) {
    new (&program_) ProgramDesc(main_program);
  }
462
  void ProduceTasks() override;
463 464
  virtual void SetStream(const gpuStream_t stream) { copy_stream_ = stream; }
  virtual void SetEvent(const gpuEvent_t event) { event_ = event; }
T
Thunderbrook 已提交
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
  void ResetStat();

 protected:
  void PushGradients();
  void CopySparseTable();
  void CopyDenseTable();
  void CopyDenseVars();

 private:
  int mpi_rank_;
  std::mutex mutex_;
  int worker_num_;
  ProgramDesc program_;
  HeterObjectPool<HeterTask> object_pool_;
  bool need_to_push_dense_;
  bool dump_slot_;
  bool need_to_push_sparse_;
  DownpourWorkerParameter param_;
  float scale_datanorm_;
  // just save the value in param_ for easy access
  std::map<uint64_t, std::string> label_var_name_;
  std::map<uint64_t, std::vector<std::string>> sparse_key_names_;
T
Thunderbrook 已提交
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
  std::map<uint64_t, std::vector<std::string>> sparse_value_names_;
  std::map<uint64_t, std::vector<std::string>> sparse_grad_names_;
  std::map<uint64_t, std::vector<std::string>> dense_value_names_;
  std::map<uint64_t, std::vector<std::string>> dense_grad_names_;
  platform::Place root_place_;
  // actually pushed feasign of each table
  std::map<uint64_t, std::vector<uint64_t>> sparse_push_keys_;

  // skipped ops
  std::vector<std::string> skip_ops_;

  std::vector<::std::future<int32_t>> push_sparse_status_;
  std::vector<::std::future<int32_t>> push_dense_status_;

  // adjust ins weight
  AdjustInsWeightConfig adjust_ins_weight_config_;
  std::vector<float> nid_show_;
  // check nan and inf during training
  std::vector<std::string> check_nan_var_names_;
  // copy table
  CopyTableConfig copy_table_config_;
  std::map<uint64_t, uint64_t> table_dependency_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_sparse_tables_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_dense_tables_;
  std::unordered_map<uint64_t, std::unordered_set<uint64_t>> feasign_set_;
  paddle::framework::Channel<std::shared_ptr<HeterTask>> pull_queue_;
  paddle::framework::Channel<std::shared_ptr<HeterTask>> push_queue_;
514 515
  gpuEvent_t event_;
  gpuStream_t copy_stream_;
T
Thunderbrook 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
  int batch_cnt_{0};
  std::atomic<int> done_cnt_{0};

  double total_time_;
  double read_time_;
  double pack_time_;
  double pull_sparse_local_time_;
  double op_all_time_;
  double xpu_op_time_;
  double xpu_wait_time_;
  double cpu_op_time_;
  double collect_label_time_;
  double fill_sparse_time_;
  double push_sparse_time_;
  double gpu_2_cpu_time_;
  double cpu_2_gpu_time_;
  uint64_t total_inst_;
};
#endif

536
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
537
    defined(PADDLE_WITH_ASCEND_CL)
H
hutuxian 已提交
538 539
class SectionWorker : public DeviceWorker {
 public:
540
  SectionWorker() {}
H
hutuxian 已提交
541 542 543
  ~SectionWorker() override {}

  void Initialize(const TrainerDesc& desc) override;
544
  void PrepareUnusedVar();
H
hutuxian 已提交
545 546 547 548 549

  void BindingDataFeedMemory() override {}
  void CreateDeviceResource(const ProgramDesc& main_prog) override{};

  void TrainFiles() override;
550
  void TrainFilesWithProfiler() override{};
H
hutuxian 已提交
551 552 553 554 555

  void PrintFetchVars() override {}

  const platform::Place& place() const { return place_; }

L
lilong12 已提交
556
  void SetDeviceIndex(int tid) override {}
H
hutuxian 已提交
557
  void SetThreadIndex(int thread_id) { thread_id_ = thread_id; }
L
lilong12 已提交
558
  void SetMicrobatchNum(int num) { num_microbatches_ = num; }
559 560 561
  void SetPipelineStageNum(int num) { num_pipeline_stages_ = num; }
  void SetPipelineStage(int stage) { pipeline_stage_ = stage; }
  void SetScheduleMode(int mode) { schedule_mode_ = mode; }
L
lilong12 已提交
562 563
  void SetMicrobatchScopes(const std::vector<Scope*>& scope) {
    microbatch_scopes_ = scope;
H
hutuxian 已提交
564
  }
L
lilong12 已提交
565 566 567
  void SetMinibatchScope(const Scope* scope) { minibatch_scope_ = scope; }
  void SetSkipVars(const std::vector<std::string>& skip_vars) {
    skip_vars_ = skip_vars;
H
hutuxian 已提交
568
  }
569 570 571 572 573 574 575 576 577
  void RunBackward(
      int micro_id, std::unique_ptr<GarbageCollector>&,
      std::unordered_map<const OperatorBase*, std::vector<std::string>>&);
  void RunForward(
      int micro_id, std::unique_ptr<GarbageCollector>&,
      std::unordered_map<const OperatorBase*, std::vector<std::string>>&);
  void RunUpdate(
      std::unique_ptr<GarbageCollector>&,
      std::unordered_map<const OperatorBase*, std::vector<std::string>>&);
578 579
  void RunFThenB(std::unique_ptr<GarbageCollector>&);
  void Run1F1B(std::unique_ptr<GarbageCollector>&);
H
hutuxian 已提交
580 581 582 583

 protected:
  int section_id_;
  int thread_id_;
L
lilong12 已提交
584
  int num_microbatches_;
585 586 587
  int num_pipeline_stages_;
  int pipeline_stage_;
  int schedule_mode_;  // 0 for F-then-B and 1 for 1F1B
L
lilong12 已提交
588 589
  std::vector<Scope*> microbatch_scopes_;
  const Scope* minibatch_scope_;
H
hutuxian 已提交
590

591 592 593 594
  // skip&backward vars are only used in 1F1B
  std::vector<std::string> skip_vars_;
  std::vector<std::string> backward_send_vars_;

H
hutuxian 已提交
595
  std::vector<std::unique_ptr<OperatorBase>> ops_;
596 597 598 599
  std::vector<OperatorBase*> forward_and_lr_ops_;
  std::vector<OperatorBase*> forward_ops_;
  std::vector<OperatorBase*> backward_ops_;
  std::vector<OperatorBase*> optimizer_ops_;
L
lilong12 已提交
600
  std::shared_ptr<framework::ProgramDesc> program_;
601 602
  std::unordered_map<const OperatorBase*, std::vector<std::string>>
      unused_vars_;
L
lilong12 已提交
603
  static uint64_t batch_id_;
H
hutuxian 已提交
604 605 606 607

  platform::DeviceContext* dev_ctx_ = nullptr;
};
#endif
L
lilong12 已提交
608

609 610
}  // namespace framework
}  // namespace paddle