test_dynrnn_gradient_check.py 11.3 KB
Newer Older
Y
Yang Yu 已提交
1 2 3 4 5
import numpy
import random
import collections
import paddle.v2.fluid as fluid
import unittest
Y
Yang Yu 已提交
6
from decorators import *
Y
Yang Yu 已提交
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80


class Memory(object):
    def __init__(self, shape, dtype='float32'):
        self.ex = numpy.zeros(shape=shape, dtype=dtype)
        self.cur = None

    def update(self, val):
        assert val.shape == self.ex.shape
        assert val.dtype == self.ex.dtype
        self.cur = val

    def ex(self):
        return self.ex

    def next(self):
        self.ex = self.cur
        self.cur = None

    def __next__(self):
        self.next()

    def reset(self):
        self.ex = numpy.zeros(shape=self.ex.shape, dtype=self.ex.dtype)
        self.cur = None


class Output(object):
    def __init__(self):
        self.outs = []

    def next_sequence(self):
        self.outs.append([])

    def out(self, val):
        self.outs[-1].append(val)

    def last(self):
        return self.outs[-1][-1]


class BaseRNN(object):
    def __init__(self, ins, mems, params, outs, num_seq=5, max_seq_len=15):
        self.num_seq = num_seq
        self.inputs = collections.defaultdict(list)

        for _ in xrange(num_seq):
            seq_len = random.randint(1, max_seq_len - 1)
            for iname in ins:
                ishape = ins[iname].get('shape', None)
                idtype = ins[iname].get('dtype', 'float32')
                lst = []
                for _ in xrange(seq_len):
                    lst.append(numpy.random.random(size=ishape).astype(idtype))
                self.inputs[iname].append(lst)

        self.mems = dict()
        for mname in mems:
            mshape = mems[mname].get('shape', None)
            mdtype = mems[mname].get('dtype', 'float32')
            self.mems[mname] = Memory(shape=mshape, dtype=mdtype)

        self.params = dict()
        for pname in params:
            pshape = params[pname].get('shape', None)
            pdtype = params[pname].get('dtype', 'float32')
            self.params[pname] = numpy.random.random(size=pshape).astype(pdtype)

        self.outputs = dict()

        for oname in outs:
            self.outputs[oname] = Output()

    def step(self, **kwargs):
Y
Yang Yu 已提交
81
        raise NotImplementedError()
Y
Yang Yu 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

    def exe(self):
        retv = dict()
        for out in self.outputs:
            retv[out] = []

        for seq_id in xrange(self.num_seq):
            for mname in self.mems:
                self.mems[mname].reset()
            for out in self.outputs:
                self.outputs[out].next_sequence()

            iname0 = self.inputs.keys()[0]
            seq_len = len(self.inputs[iname0][seq_id])

            for step_id in xrange(seq_len):
                xargs = dict()

                for iname in self.inputs:
                    xargs[iname] = self.inputs[iname][seq_id][step_id]

                for mname in self.mems:
                    xargs[mname] = self.mems[mname]

                for pname in self.params:
                    xargs[pname] = self.params[pname]

                for out in self.outputs:
                    xargs[out] = self.outputs[out]

                self.step(**xargs)

                for mname in self.mems:
                    next(self.mems[mname])

            for out in self.outputs:
                retv[out].append(self.outputs[out].last())

        for out in retv:
            retv[out] = numpy.array(retv[out])
        return retv

    def to_feed(self, place):
        feed_dict = dict()

        for iname in self.inputs:
            lod = [0]
            np_flatten = []
            for seq_id in xrange(len(self.inputs[iname])):
                seq_len = len(self.inputs[iname][seq_id])
                lod.append(lod[-1] + seq_len)
                np_flatten.extend(self.inputs[iname][seq_id])

            t = fluid.Tensor()
            t.set(numpy.array(np_flatten), place)
            t.set_lod([lod])
            feed_dict[iname] = t

        for pname in self.params:
            feed_dict[pname] = self.params[pname]
        return feed_dict

Y
Yang Yu 已提交
144
    def get_numeric_gradient_of_param(self, param_name, delta=0.001):
Y
Yang Yu 已提交
145
        p = self.params[param_name]
Y
Yang Yu 已提交
146 147 148
        if len(p.shape) != 2:
            raise ValueError("Not support get numeric gradient of an parameter,"
                             " which is not matrix")
Y
Yang Yu 已提交
149 150
        g = numpy.zeros(shape=p.shape, dtype=p.dtype)

Y
Yang Yu 已提交
151 152 153 154 155 156 157 158 159
        for i in xrange(p.shape[0]):
            for j in xrange(p.shape[1]):
                o = p[i][j]
                p[i][j] += delta
                pos = self._exe_mean_out_()
                p[i][j] -= 2 * delta
                neg = self._exe_mean_out_()
                p[i][j] = o
                g[i][j] = (pos - neg) / (delta * 2)
Y
Yang Yu 已提交
160 161
        return g

Y
Stash  
Yang Yu 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
    def get_numeric_gradient_of_input(self,
                                      input_name,
                                      delta=0.001,
                                      return_one_tensor=True):
        ipt = self.inputs[input_name]
        grad = []

        for seq in ipt:
            seq_grad = []
            for item in seq:
                item_grad = numpy.zeros(shape=item.shape, dtype=item.dtype)
                if len(item.shape) != 1:
                    raise ValueError("Not support")

                for i in xrange(len(item)):
                    o = item[i]
                    item[i] += delta
                    pos = self._exe_mean_out_()
                    item[i] -= 2 * delta
                    neg = self._exe_mean_out_()
                    item[i] = o
                    item_grad[i] = (pos - neg) / (delta * 2)
                seq_grad.append(item_grad)
            grad.append(seq_grad)

        if not return_one_tensor:
            return grad

        for i in xrange(len(grad)):
            grad[i] = numpy.concatenate(grad[i])
        grad = numpy.concatenate(grad)
        return grad

Y
Yang Yu 已提交
195 196 197 198 199 200
    def _exe_mean_out_(self):
        outs = self.exe()
        return numpy.array([o.mean() for o in outs.itervalues()]).mean()


class TestSimpleMul(unittest.TestCase):
Y
Yang Yu 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
    DATA_NAME = 'X'
    DATA_WIDTH = 32
    PARAM_NAME = 'W'
    HIDDEN_WIDTH = 10
    OUT_NAME = 'Out'

    class SimpleMul(BaseRNN):
        def __init__(self):
            base = TestSimpleMul
            super(base.SimpleMul, self).__init__({
                base.DATA_NAME: {
                    'shape': [base.DATA_WIDTH]
                }
            }, {}, {
                base.PARAM_NAME: {
                    'shape': [base.DATA_WIDTH, base.HIDDEN_WIDTH]
                }
            }, [base.OUT_NAME])

        def step(self, X, W, Out):
            Out.out(numpy.matmul(X, W))

Y
Yang Yu 已提交
223 224 225 226
    # Test many times in local to ensure the random seed cannot breaks CI
    # @many_times(10)
    @prog_scope()
    def test_forward_backward(self):
Y
Stash  
Yang Yu 已提交
227
        py_rnn = TestSimpleMul.SimpleMul()
Y
Yang Yu 已提交
228 229
        dat = fluid.layers.data(
            name=self.DATA_NAME, shape=[self.DATA_WIDTH], lod_level=1)
Y
Stash  
Yang Yu 已提交
230
        dat.stop_gradient = False
Y
Yang Yu 已提交
231 232 233 234 235

        rnn = fluid.layers.DynamicRNN()
        with rnn.block():
            d = rnn.step_input(dat)
            o = fluid.layers.fc(input=d,
Y
Yang Yu 已提交
236
                                param_attr=self.PARAM_NAME,
Y
Yang Yu 已提交
237
                                bias_attr=False,
Y
Yang Yu 已提交
238
                                size=self.HIDDEN_WIDTH,
Y
Yang Yu 已提交
239 240 241 242 243 244 245
                                act=None)
            rnn.output(o)

        out = rnn()
        out = fluid.layers.sequence_pool(out, pool_type='last')
        loss = fluid.layers.mean(x=out)
        fluid.backward.append_backward_ops(loss)
Y
Yang Yu 已提交
246 247 248

        cpu = fluid.CPUPlace()
        exe = fluid.Executor(cpu)
Y
Stash  
Yang Yu 已提交
249 250 251 252 253 254 255 256
        out, w_g, i_g = map(numpy.array,
                            exe.run(feed=py_rnn.to_feed(cpu),
                                    fetch_list=[
                                        out, self.PARAM_NAME + "@GRAD",
                                        self.DATA_NAME + "@GRAD"
                                    ],
                                    return_numpy=False))
        out_by_python = py_rnn.exe()[self.OUT_NAME]
Y
Yang Yu 已提交
257
        self.assertTrue(numpy.allclose(out, out_by_python))
Y
Stash  
Yang Yu 已提交
258
        w_g_num = py_rnn.get_numeric_gradient_of_param(self.PARAM_NAME)
Y
Yang Yu 已提交
259
        self.assertTrue(numpy.allclose(w_g_num, w_g, rtol=0.05))
Y
Stash  
Yang Yu 已提交
260 261 262 263
        i_g_num = py_rnn.get_numeric_gradient_of_input(
            input_name=self.DATA_NAME)
        i_g_num = i_g_num.reshape(i_g.shape)
        self.assertTrue(numpy.allclose(i_g_num, i_g, rtol=0.05))
Y
Yang Yu 已提交
264 265


Y
Yang Yu 已提交
266 267
class TestSimpleMulWithMemory(unittest.TestCase):
    DATA_WIDTH = 32
Y
Stash  
Yang Yu 已提交
268
    HIDDEN_WIDTH = 20
Y
Yang Yu 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
    DATA_NAME = 'X'
    PARAM_NAME = 'W'

    class SimpleMulWithMemory(BaseRNN):
        def __init__(self):
            super(TestSimpleMulWithMemory.SimpleMulWithMemory, self).__init__({
                TestSimpleMulWithMemory.DATA_NAME: {
                    'shape': [TestSimpleMulWithMemory.DATA_WIDTH]
                }
            }, {'Mem': {
                'shape': [TestSimpleMulWithMemory.HIDDEN_WIDTH]
            }}, {
                TestSimpleMulWithMemory.PARAM_NAME: {
                    'shape': [
                        TestSimpleMulWithMemory.DATA_WIDTH,
                        TestSimpleMulWithMemory.HIDDEN_WIDTH
                    ]
                }
            }, ['Out'])

        def step(self, X, Mem, W, Out):
            o = numpy.matmul(X, W)
            assert isinstance(Mem, Memory)
            o += Mem.ex
            Mem.update(o)
            assert isinstance(Out, Output)
            Out.out(o)

Y
Stash  
Yang Yu 已提交
297
    # @many_times(10)
Y
Yang Yu 已提交
298 299 300 301 302 303
    @prog_scope()
    def test_forward_backward(self):
        py_rnn = TestSimpleMulWithMemory.SimpleMulWithMemory()

        data = fluid.layers.data(
            name=self.DATA_NAME, shape=[self.DATA_WIDTH], lod_level=1)
Y
Stash  
Yang Yu 已提交
304
        data.stop_gradient = False
Y
Yang Yu 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
        rnn = fluid.layers.DynamicRNN()
        with rnn.block():
            d = rnn.step_input(data)
            mem = rnn.memory(value=0.0, shape=[self.HIDDEN_WIDTH])
            hidden = fluid.layers.fc(input=d,
                                     size=self.HIDDEN_WIDTH,
                                     param_attr=self.PARAM_NAME,
                                     bias_attr=False,
                                     act=None)
            o = fluid.layers.elementwise_add(x=hidden, y=mem)
            rnn.update_memory(mem, o)
            rnn.output(o)

        out = rnn()
        last = fluid.layers.sequence_pool(input=out, pool_type='last')
Y
Stash  
Yang Yu 已提交
320 321
        loss = fluid.layers.mean(x=last)
        fluid.backward.append_backward_ops(loss)
Y
Yang Yu 已提交
322 323 324

        cpu = fluid.CPUPlace()
        exe = fluid.Executor(cpu)
Y
Stash  
Yang Yu 已提交
325 326 327 328 329 330 331 332 333
        feed = py_rnn.to_feed(cpu)
        for _ in xrange(2):
            last_np, w_g, i_g = map(numpy.array,
                                    exe.run(feed=feed,
                                            fetch_list=[
                                                last, self.PARAM_NAME + "@GRAD",
                                                self.DATA_NAME + "@GRAD"
                                            ],
                                            return_numpy=False))
Y
Yang Yu 已提交
334 335 336
        last_by_py, = py_rnn.exe().values()

        self.assertTrue(numpy.allclose(last_np, last_by_py))
Y
Stash  
Yang Yu 已提交
337 338 339 340 341 342 343 344 345
        w_g_num = py_rnn.get_numeric_gradient_of_param(self.PARAM_NAME)
        print w_g[0], w_g_num[0]
        self.assertTrue(numpy.allclose(w_g_num, w_g, rtol=0.1))
        i_g_num = py_rnn.get_numeric_gradient_of_input(self.DATA_NAME)
        i_g_num = i_g_num.reshape(i_g.shape)

        # Since this RNN has many float add. The number could be not stable.
        # rtol = 0.1
        self.assertTrue(numpy.allclose(i_g_num, i_g, rtol=0.1))
Y
Yang Yu 已提交
346 347


Y
Yang Yu 已提交
348 349
if __name__ == '__main__':
    unittest.main()