test_scatter_nd_op.py 12.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid as fluid
21
import paddle
22
from paddle.fluid.dygraph.base import switch_to_static_graph
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69


def numpy_scatter_nd(ref, index, updates, fun):
    ref_shape = ref.shape
    index_shape = index.shape

    end_size = index_shape[-1]
    remain_numl = 1
    for i in range(len(index_shape) - 1):
        remain_numl *= index_shape[i]

    slice_size = 1
    for i in range(end_size, len(ref_shape)):
        slice_size *= ref_shape[i]

    flat_index = index.reshape([remain_numl] + list(index_shape[-1:]))
    flat_updates = updates.reshape((remain_numl, slice_size))
    flat_output = ref.reshape(list(ref_shape[:end_size]) + [slice_size])

    for i_up, i_out in enumerate(flat_index):
        i_out = tuple(i_out)
        flat_output[i_out] = fun(flat_output[i_out], flat_updates[i_up])
    return flat_output.reshape(ref.shape)


def numpy_scatter_nd_add(ref, index, updates):
    return numpy_scatter_nd(ref, index, updates, lambda x, y: x + y)


def judge_update_shape(ref, index):
    ref_shape = ref.shape
    index_shape = index.shape
    update_shape = []
    for i in range(len(index_shape) - 1):
        update_shape.append(index_shape[i])
    for i in range(index_shape[-1], len(ref_shape), 1):
        update_shape.append(ref_shape[i])
    return update_shape


class TestScatterNdAddSimpleOp(OpTest):
    """
    A simple example
    """

    def setUp(self):
        self.op_type = "scatter_nd_add"
70
        ref_np = np.random.random([100]).astype("float64")
71
        index_np = np.random.randint(0, 100, [100, 1]).astype("int32")
72
        updates_np = np.random.random([100]).astype("float64")
73 74 75 76 77 78 79 80 81
        expect_np = numpy_scatter_nd_add(ref_np.copy(), index_np, updates_np)

        self.inputs = {'X': ref_np, 'Index': index_np, 'Updates': updates_np}
        self.outputs = {'Out': expect_np}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
S
ShenLiang 已提交
82
        self.check_grad(['X', 'Updates'], 'Out')
83 84 85 86 87 88 89 90 91


class TestScatterNdAddWithEmptyIndex(OpTest):
    """
    Index has empty element
    """

    def setUp(self):
        self.op_type = "scatter_nd_add"
Z
zhupengyang 已提交
92
        ref_np = np.random.random((10, 10)).astype("float64")
93
        index_np = np.array([[], []]).astype("int32")
Z
zhupengyang 已提交
94
        updates_np = np.random.random((2, 10, 10)).astype("float64")
95 96 97 98 99 100 101 102 103 104

        expect_np = numpy_scatter_nd_add(ref_np.copy(), index_np, updates_np)

        self.inputs = {'X': ref_np, 'Index': index_np, 'Updates': updates_np}
        self.outputs = {'Out': expect_np}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
S
ShenLiang 已提交
105
        self.check_grad(['X', 'Updates'], 'Out')
106 107 108 109 110 111 112 113 114


class TestScatterNdAddWithHighRankSame(OpTest):
    """
    Both Index and X have high rank, and Rank(Index) = Rank(X)
    """

    def setUp(self):
        self.op_type = "scatter_nd_add"
S
ShenLiang 已提交
115
        shape = (3, 2, 2, 1, 10)
116
        ref_np = np.random.rand(*shape).astype("float64")
117 118
        index_np = np.vstack(
            [np.random.randint(
S
ShenLiang 已提交
119
                0, s, size=100) for s in shape]).T.astype("int32")
120
        update_shape = judge_update_shape(ref_np, index_np)
121
        updates_np = np.random.rand(*update_shape).astype("float64")
122 123 124 125 126 127 128 129 130
        expect_np = numpy_scatter_nd_add(ref_np.copy(), index_np, updates_np)

        self.inputs = {'X': ref_np, 'Index': index_np, 'Updates': updates_np}
        self.outputs = {'Out': expect_np}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
S
ShenLiang 已提交
131
        self.check_grad(['X', 'Updates'], 'Out')
132 133 134 135 136 137 138 139 140


class TestScatterNdAddWithHighRankDiff(OpTest):
    """
    Both Index and X have high rank, and Rank(Index) < Rank(X)
    """

    def setUp(self):
        self.op_type = "scatter_nd_add"
S
ShenLiang 已提交
141
        shape = (8, 2, 2, 1, 10)
142 143 144 145 146 147 148 149 150 151 152 153 154 155
        ref_np = np.random.rand(*shape).astype("double")
        index = np.vstack([np.random.randint(0, s, size=500) for s in shape]).T
        index_np = index.reshape([10, 5, 10, 5]).astype("int64")
        update_shape = judge_update_shape(ref_np, index_np)
        updates_np = np.random.rand(*update_shape).astype("double")
        expect_np = numpy_scatter_nd_add(ref_np.copy(), index_np, updates_np)

        self.inputs = {'X': ref_np, 'Index': index_np, 'Updates': updates_np}
        self.outputs = {'Out': expect_np}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
S
ShenLiang 已提交
156
        self.check_grad(['X', 'Updates'], 'Out')
157 158 159


#Test Python API
160
class TestScatterNdOpAPI(unittest.TestCase):
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
    """
    test scatter_nd_add api and scatter_nd api
    """

    def testcase1(self):
        ref1 = fluid.layers.data(
            name='ref1',
            shape=[10, 9, 8, 1, 3],
            dtype='float32',
            append_batch_size=False)
        index1 = fluid.layers.data(
            name='index1',
            shape=[5, 5, 8, 5],
            dtype='int32',
            append_batch_size=False)
        updates1 = fluid.layers.data(
            name='update1',
            shape=[5, 5, 8],
            dtype='float32',
            append_batch_size=False)
        output1 = fluid.layers.scatter_nd_add(ref1, index1, updates1)

    def testcase2(self):
        ref2 = fluid.layers.data(
            name='ref2',
            shape=[10, 9, 8, 1, 3],
            dtype='double',
            append_batch_size=False)
        index2 = fluid.layers.data(
            name='index2',
            shape=[5, 8, 5],
            dtype='int32',
            append_batch_size=False)
        updates2 = fluid.layers.data(
            name='update2',
            shape=[5, 8],
            dtype='double',
            append_batch_size=False)
        output2 = fluid.layers.scatter_nd_add(
            ref2, index2, updates2, name="scatter_nd_add")

    def testcase3(self):
        shape3 = [10, 9, 8, 1, 3]
        index3 = fluid.layers.data(
            name='index3',
            shape=[5, 5, 8, 5],
            dtype='int32',
            append_batch_size=False)
        updates3 = fluid.layers.data(
            name='update3',
            shape=[5, 5, 8],
            dtype='float32',
            append_batch_size=False)
        output3 = fluid.layers.scatter_nd(index3, updates3, shape3)

    def testcase4(self):
        shape4 = [10, 9, 8, 1, 3]
        index4 = fluid.layers.data(
            name='index4',
            shape=[5, 5, 8, 5],
            dtype='int32',
            append_batch_size=False)
        updates4 = fluid.layers.data(
            name='update4',
            shape=[5, 5, 8],
            dtype='double',
            append_batch_size=False)
        output4 = fluid.layers.scatter_nd(
            index4, updates4, shape4, name='scatter_nd')

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
    def testcase5(self):
        if not fluid.core.is_compiled_with_cuda():
            return

        shape = [2, 3, 4]
        x = np.arange(int(np.prod(shape))).reshape(shape)
        index = np.array([[0, 0, 2], [0, 1, 2]])
        val = np.array([-1, -3])

        with fluid.dygraph.guard():
            device = paddle.get_device()
            paddle.set_device('gpu')
            gpu_value = paddle.scatter_nd_add(
                paddle.to_tensor(x),
                paddle.to_tensor(index), paddle.to_tensor(val))
            paddle.set_device('cpu')
            cpu_value = paddle.scatter_nd_add(
                paddle.to_tensor(x),
                paddle.to_tensor(index), paddle.to_tensor(val))
            self.assertTrue(
                np.array_equal(gpu_value.numpy(), cpu_value.numpy()))
            paddle.set_device(device)

        @switch_to_static_graph
        def test_static_graph():
            with paddle.static.program_guard(paddle.static.Program(),
                                             paddle.static.Program()):
                x_t = paddle.static.data(name="x", dtype=x.dtype, shape=x.shape)
                index_t = paddle.static.data(
                    name="index", dtype=index.dtype, shape=index.shape)
                val_t = paddle.static.data(
                    name="val", dtype=val.dtype, shape=val.shape)
                out_t = paddle.scatter_nd_add(x_t, index_t, val_t)
                feed = {x_t.name: x, index_t.name: index, val_t.name: val}
                fetch = [out_t]

                gpu_exe = paddle.static.Executor(paddle.CUDAPlace(0))
                gpu_value = gpu_exe.run(feed=feed, fetch_list=fetch)[0]
                cpu_exe = paddle.static.Executor(paddle.CPUPlace())
                cpu_value = cpu_exe.run(feed=feed, fetch_list=fetch)[0]
                self.assertTrue(np.array_equal(gpu_value, cpu_value))

        test_static_graph()

275 276

#Test Raise Error
277
class TestScatterNdOpRaise(unittest.TestCase):
278 279 280 281 282 283 284 285 286 287 288 289
    def test_check_raise(self):
        def check_raise_is_test():
            try:
                ref5 = fluid.layers.data(
                    name='ref5', shape=[3, 4, 5], dtype='float32')
                index5 = fluid.layers.data(
                    name='index5', shape=[2, 10], dtype='int32')
                updates5 = fluid.layers.data(
                    name='updates5', shape=[2, 10], dtype='float32')
                output5 = fluid.layers.scatter_nd_add(ref5, index5, updates5)
            except Exception as e:
                t = \
K
Kqnonrime 已提交
290
                "The last dimension of Input(Index)'s shape should be no greater "
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
                if t in str(e):
                    raise IndexError

        self.assertRaises(IndexError, check_raise_is_test)

    def test_check_raise2(self):
        with self.assertRaises(ValueError):
            ref6 = fluid.layers.data(
                name='ref6',
                shape=[10, 9, 8, 1, 3],
                dtype='double',
                append_batch_size=False)
            index6 = fluid.layers.data(
                name='index6',
                shape=[5, 8, 5],
                dtype='int32',
                append_batch_size=False)
            updates6 = fluid.layers.data(
                name='update6',
                shape=[5, 8],
                dtype='float32',
                append_batch_size=False)
            output6 = fluid.layers.scatter_nd_add(ref6, index6, updates6)

    def test_check_raise3(self):
        def check_raise_is_test():
            try:
                shape = [3, 4, 5]
                index7 = fluid.layers.data(
                    name='index7', shape=[2, 1], dtype='int32')
                updates7 = fluid.layers.data(
                    name='updates7', shape=[2, 4, 5, 20], dtype='float32')
                output7 = fluid.layers.scatter_nd(index7, updates7, shape)
            except Exception as e:
                t = \
                "Updates has wrong shape"
                if t in str(e):
                    raise ValueError

        self.assertRaises(ValueError, check_raise_is_test)


333 334 335 336 337 338 339 340 341
class TestDygraph(unittest.TestCase):
    def test_dygraph(self):
        with fluid.dygraph.guard(fluid.CPUPlace()):
            index_data = np.array([[1, 1], [0, 1], [1, 3]]).astype(np.int64)
            index = fluid.dygraph.to_variable(index_data)
            updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
            shape = [3, 5, 9, 10]
            output = paddle.scatter_nd(index, updates, shape)

Z
zhangchunle 已提交
342
    def test_dygraph_1(self):
343 344 345 346 347 348 349 350
        with fluid.dygraph.guard(fluid.CPUPlace()):
            x = paddle.rand(shape=[3, 5, 9, 10], dtype='float32')
            updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
            index_data = np.array([[1, 1], [0, 1], [1, 3]]).astype(np.int64)
            index = fluid.dygraph.to_variable(index_data)
            output = paddle.scatter_nd_add(x, index, updates)


351
if __name__ == "__main__":
352
    paddle.enable_static()
353
    unittest.main()