voc2012.py 5.6 KB
Newer Older
K
Kaipeng Deng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import io
import tarfile
import numpy as np
from PIL import Image

22
import paddle
K
Kaipeng Deng 已提交
23
from paddle.io import Dataset
24
from paddle.dataset.common import _check_exists_and_download
K
Kaipeng Deng 已提交
25 26 27

__all__ = ["VOC2012"]

L
LielinJiang 已提交
28
VOC_URL = 'https://dataset.bj.bcebos.com/voc/VOCtrainval_11-May-2012.tar'
K
Kaipeng Deng 已提交
29

30
VOC_MD5 = '6cd6e144f989b92b3379bac3b3de84fd'
K
Kaipeng Deng 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43
SET_FILE = 'VOCdevkit/VOC2012/ImageSets/Segmentation/{}.txt'
DATA_FILE = 'VOCdevkit/VOC2012/JPEGImages/{}.jpg'
LABEL_FILE = 'VOCdevkit/VOC2012/SegmentationClass/{}.png'

CACHE_DIR = 'voc2012'

MODE_FLAG_MAP = {'train': 'trainval', 'test': 'train', 'valid': "val"}


class VOC2012(Dataset):
    """
    Implementation of `VOC2012 <http://host.robots.ox.ac.uk/pascal/VOC/voc2012/>`_ dataset

L
LielinJiang 已提交
44 45 46
    To speed up the download, we put the data on https://dataset.bj.bcebos.com/voc/VOCtrainval_11-May-2012.tar. 
    Original data can get from http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar.

K
Kaipeng Deng 已提交
47 48
    Args:
        data_file(str): path to data file, can be set None if
49
            :attr:`download` is True. Default None,  default data path: ~/.cache/paddle/dataset/voc2012
K
Kaipeng Deng 已提交
50
        mode(str): 'train', 'valid' or 'test' mode. Default 'train'.
51
        download(bool): download dataset automatically if :attr:`data_file` is None. Default True
52 53 54 55
        backend(str, optional): Specifies which type of image to be returned: 
            PIL.Image or numpy.ndarray. Should be one of {'pil', 'cv2'}. 
            If this option is not set, will get backend from ``paddle.vsion.get_image_backend`` ,
            default backend is 'pil'. Default: None.
K
Kaipeng Deng 已提交
56 57 58 59 60

    Examples:

        .. code-block:: python

61 62
            import paddle
            from paddle.vision.datasets import VOC2012
63
            from paddle.vision.transforms import Normalize
K
Kaipeng Deng 已提交
64

65 66 67
            class SimpleNet(paddle.nn.Layer):
                def __init__(self):
                    super(SimpleNet, self).__init__()
K
Kaipeng Deng 已提交
68

69 70
                def forward(self, image, label):
                    return paddle.sum(image), label
K
Kaipeng Deng 已提交
71 72


73 74 75 76
            normalize = Normalize(mean=[0.5, 0.5, 0.5],
                                  std=[0.5, 0.5, 0.5],
                                  data_format='HWC')
            voc2012 = VOC2012(mode='train', transform=normalize, backend='cv2')
K
Kaipeng Deng 已提交
77

78 79 80 81
            for i in range(10):
                image, label= voc2012[i]
                image = paddle.cast(paddle.to_tensor(image), 'float32')
                label = paddle.to_tensor(label)
K
Kaipeng Deng 已提交
82

83 84 85
                model = SimpleNet()
                image, label= model(image, label)
                print(image.numpy().shape, label.numpy().shape)
K
Kaipeng Deng 已提交
86 87 88 89 90 91 92

    """

    def __init__(self,
                 data_file=None,
                 mode='train',
                 transform=None,
93 94
                 download=True,
                 backend=None):
K
Kaipeng Deng 已提交
95 96
        assert mode.lower() in ['train', 'valid', 'test'], \
            "mode should be 'train', 'valid' or 'test', but got {}".format(mode)
97 98 99 100 101 102 103 104 105

        if backend is None:
            backend = paddle.vision.get_image_backend()
        if backend not in ['pil', 'cv2']:
            raise ValueError(
                "Expected backend are one of ['pil', 'cv2'], but got {}"
                .format(backend))
        self.backend = backend

K
Kaipeng Deng 已提交
106 107 108 109 110 111 112 113 114 115 116 117
        self.flag = MODE_FLAG_MAP[mode.lower()]

        self.data_file = data_file
        if self.data_file is None:
            assert download, "data_file is not set and downloading automatically is disabled"
            self.data_file = _check_exists_and_download(
                data_file, VOC_URL, VOC_MD5, CACHE_DIR, download)
        self.transform = transform

        # read dataset into memory
        self._load_anno()

118 119
        self.dtype = paddle.get_default_dtype()

K
Kaipeng Deng 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
    def _load_anno(self):
        self.name2mem = {}
        self.data_tar = tarfile.open(self.data_file)
        for ele in self.data_tar.getmembers():
            self.name2mem[ele.name] = ele

        set_file = SET_FILE.format(self.flag)
        sets = self.data_tar.extractfile(self.name2mem[set_file])

        self.data = []
        self.labels = []

        for line in sets:
            line = line.strip()
            data = DATA_FILE.format(line.decode('utf-8'))
            label = LABEL_FILE.format(line.decode('utf-8'))
            self.data.append(data)
            self.labels.append(label)

    def __getitem__(self, idx):
        data_file = self.data[idx]
        label_file = self.labels[idx]

        data = self.data_tar.extractfile(self.name2mem[data_file]).read()
        label = self.data_tar.extractfile(self.name2mem[label_file]).read()
        data = Image.open(io.BytesIO(data))
        label = Image.open(io.BytesIO(label))
147 148 149 150 151

        if self.backend == 'cv2':
            data = np.array(data)
            label = np.array(label)

K
Kaipeng Deng 已提交
152 153
        if self.transform is not None:
            data = self.transform(data)
154 155 156 157 158

        if self.backend == 'cv2':
            return data.astype(self.dtype), label.astype(self.dtype)

        return data, label
K
Kaipeng Deng 已提交
159 160 161

    def __len__(self):
        return len(self.data)
162 163 164 165

    def __del__(self):
        if self.data_tar:
            self.data_tar.close()