test_einsum_v2.py 19.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import contextlib
import unittest
import paddle
from paddle.fluid import core
20
from paddle.fluid.dygraph.amp.auto_cast import _is_gpu_bfloat16_supported
21 22

import os
23

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
os.environ['FLAGS_new_einsum'] = "1"


def error_trans(func, *args, **kargs):
    """ 
    transport C++ exception into Python exception. 
    because einsum_v2 raise different exception with einsum_v1.
    """
    try:
        out = func(*args, **kargs)
    except ValueError as e:
        if "Same label have different shapes" in str(e):
            raise AssertionError("Invalid operands: label i "
                                 "corresponds to non-broadcastable dimensions.")


class TestErrors(unittest.TestCase):
41

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
    def setUp(self):
        pass

    def test_diagonalize_errors(self):
        a = np.arange(4 * 3 * 4 * 4).reshape(4, 3, 4, 4).astype('float')
        a = paddle.to_tensor(a)
        with self.assertRaisesRegex(AssertionError,
                                    ('Duplicate labels are not supported.')):
            paddle.einsum('...ii->...i', a)
        with self.assertRaisesRegex(AssertionError,
                                    ('Duplicate labels are not supported.')):
            paddle.einsum('i...i', a)
        with self.assertRaisesRegex(AssertionError,
                                    ('Duplicate labels are not supported.')):
            paddle.einsum('i...i->i...', a)

    def test_param_errors(self):
        a = np.arange(4 * 3 * 4 * 4).reshape(4, 3, 4, 4).astype('float')
        a = paddle.to_tensor(a)
        with self.assertRaisesRegex(
                AssertionError,
            ("Required at least one operand in Einsum API, but received 0 ")):
            paddle.einsum('ijk')
65 66 67
        with self.assertRaisesRegex(
                AssertionError,
            ('Invalid equation: multiple `->` were found.')):
68
            paddle.einsum('i -> j -> k', a)
69 70 71 72
        with self.assertRaisesRegex(
                AssertionError,
            ("Invalid equation: the number of operands is 2, "
             "but found 3 segments in the label equation.")):
73
            paddle.einsum('i,j,k', a, a)
74 75 76 77
        with self.assertRaisesRegex(
                AssertionError,
            ("Invalid equation: the number of operands is 2, "
             "but found 1 segments in the label equation.")):
78
            paddle.einsum('ij -> k', a, a)
79 80 81 82
        with self.assertRaisesRegex(
                AssertionError,
            ("Invalid equation: the number of operands is 1, "
             "but found 2 segments in the label equation.")):
83
            paddle.einsum('i, -> k', a)
84 85 86
        with self.assertRaisesRegex(
                AssertionError,
            ("Invalid equation: the label string '' misses dimensions.")):
87
            paddle.einsum('->', a)
88 89 90
        with self.assertRaisesRegex(
                AssertionError,
            ("Invalid equation: the label string 'i' misses dimensions.")):
91
            paddle.einsum('i', a)
92 93 94
        with self.assertRaisesRegex(
                AssertionError, ("Invalid equation: _ is not a valid label, "
                                 "which should be letters.")):
95
            paddle.einsum('i_', a)
96 97 98
        with self.assertRaisesRegex(
                AssertionError,
            ("Invalid equation: `.` is found outside of an ellipsis.")):
99
            paddle.einsum('i..j', a)
100 101 102
        with self.assertRaisesRegex(
                AssertionError,
            ("Invalid equation: `.` is found outside of an ellipsis.")):
103
            paddle.einsum('...k...', a)
104 105 106
        with self.assertRaisesRegex(
                AssertionError,
            ("Invalid equation: missing ellipsis in output labels.")):
107
            paddle.einsum('i...->i', a)
108 109 110
        with self.assertRaisesRegex(
                AssertionError,
            ("Invalid equation: duplicate output labels are found.")):
111
            paddle.einsum('i...->i...i', a)
112 113 114 115
        with self.assertRaisesRegex(
                AssertionError,
            ("Invalid operands: label i "
             "corresponds to non-broadcastable dimensions.")):
116 117 118 119
            error_trans(paddle.einsum, 'ij...,ji...', a, a)


class TestEinsum(unittest.TestCase):
120

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    @classmethod
    def setUpClass(cls):
        np.random.seed(12345)

        cls.TEST_SAMPLES = {
            "a": np.random.rand(1, 1),
            "b": np.random.rand(1),
            "x": np.random.rand(5),
            "y": np.random.rand(7),
            "A": np.random.rand(4, 5),
            "B": np.random.rand(2, 5),
            "C": np.random.rand(3, 7),
            "D": np.random.rand(3, 4, 5),
            "E": np.random.rand(3, 5, 2),
            "F": np.random.rand(2, 4, 5, 3),
            "G": np.random.rand(4, 2, 5),
            "H": np.random.rand(3, 2, 4),
            "I": np.random.rand(2, 2),
            "J": np.random.rand(1, 3, 5),
            "K": np.random.rand(1, 2, 3, 4),
        }

    def _get_place(self, force_to_use_cpu=False):
        if force_to_use_cpu:
            return core.CPUPlace()
        else:
            if core.is_compiled_with_cuda():
                return core.CUDAPlace(0)
            return core.CPUPlace()

    def check_output_equal(self, actual, expect, rtol=1.e-5, atol=1.e-8):
        error_msg = 'Output has diff at place:{}. \nExpect: {} \nBut Got: {} in class {}'
153 154 155 156 157 158 159
        np.testing.assert_allclose(actual,
                                   expect,
                                   rtol=rtol,
                                   atol=atol,
                                   err_msg=error_msg.format(
                                       paddle.get_device(), expect, actual,
                                       self.__class__.__name__))
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183

    def setUp(self):
        self.sample = {"paradigm": "i->", "data": ["x"]}

    def test_forward(self):
        operands = [
            TestEinsum.TEST_SAMPLES[operand] for operand in self.sample["data"]
        ]
        expected_result = np.einsum(self.sample["paradigm"], *operands)
        equation = self.sample["paradigm"]

        with paddle.fluid.dygraph.guard(
                self._get_place(force_to_use_cpu=False)):
            pd_operands = [paddle.to_tensor(operand) for operand in operands]
            result = paddle.einsum(equation, *pd_operands)
            self.check_output_equal(result.numpy(), expected_result)

        with paddle.fluid.dygraph.guard(self._get_place(force_to_use_cpu=True)):
            pd_operands = [paddle.to_tensor(operand) for operand in operands]
            result = paddle.einsum(equation, *pd_operands)
            self.check_output_equal(result.numpy(), expected_result)


class TestEinsumVectorDot(TestEinsum):
184

185 186 187 188 189
    def setUp(self):
        self.sample = {"paradigm": "i,i->", "data": ["x", "x"]}


class TestEinsumVectorMul(TestEinsum):
190

191 192 193 194 195
    def setUp(self):
        self.sample = {"paradigm": "i,i->i", "data": ["x", "x"]}


class TestEinsumVectorOuter(TestEinsum):
196

197 198 199 200 201
    def setUp(self):
        self.sample = {"paradigm": "i,j->ij", "data": ["x", "y"]}


class TestEinsumMatrixTranspose(TestEinsum):
202

203 204 205 206 207
    def setUp(self):
        self.sample = {"paradigm": "ij->ji", "data": ["A"]}


class TestEinsumMatrixRowSum(TestEinsum):
208

209 210 211 212 213
    def setUp(self):
        self.sample = {"paradigm": "ij->j", "data": ["A"]}


class TestEinsumMatrixColSum(TestEinsum):
214

215 216 217 218 219
    def setUp(self):
        self.sample = {"paradigm": "ij->i", "data": ["A"]}


class TestEinsumMatrixEleMul(TestEinsum):
220

221 222 223 224 225
    def setUp(self):
        self.sample = {"paradigm": "ij,ij->ij", "data": ["A", "A"]}


class TestEinsumDegenerateMatrixVecMul(TestEinsum):
226

227 228 229 230 231
    def setUp(self):
        self.sample = {"paradigm": "ij,j", "data": ["a", "b"]}


class TestEinsumMatrixVecMul(TestEinsum):
232

233 234 235 236 237
    def setUp(self):
        self.sample = {"paradigm": "ij,j->i", "data": ["A", "x"]}


class TestEinsumMatrixMul(TestEinsum):
238

239 240 241 242 243
    def setUp(self):
        self.sample = {"paradigm": "ij,kj->ik", "data": ["A", "B"]}


class TestEinsumMatrixOuter(TestEinsum):
244

245 246 247 248 249
    def setUp(self):
        self.sample = {"paradigm": "ij,kl->ijkl", "data": ["A", "C"]}


class TestEinsumTensorBMM(TestEinsum):
250

251 252 253 254 255
    def setUp(self):
        self.sample = {"paradigm": "bij,bjk->bik", "data": ["D", "E"]}


class TestEinsumTensorContract1(TestEinsum):
256

257 258 259 260 261
    def setUp(self):
        self.sample = {"paradigm": "ijk,jk->i", "data": ["D", "A"]}


class TestEinsumTensorContract2(TestEinsum):
262

263 264 265 266 267
    def setUp(self):
        self.sample = {"paradigm": "ijk,lk->ijl", "data": ["D", "B"]}


class TestEinsumTensorContract3(TestEinsum):
268

269 270 271 272 273
    def setUp(self):
        self.sample = {"paradigm": "abcd,dfg->abcfg", "data": ["F", "D"]}


class TestEinsumTensorContract4(TestEinsum):
274

275 276 277 278 279
    def setUp(self):
        self.sample = {"paradigm": "ijk,jk->ik", "data": ["D", "A"]}


class TestEinsumTensorContract5(TestEinsum):
280

281 282 283 284 285
    def setUp(self):
        self.sample = {"paradigm": "ijk,jk->ij", "data": ["D", "A"]}


class TestEinsumTensorContract6(TestEinsum):
286

287 288 289 290 291
    def setUp(self):
        self.sample = {"paradigm": "ik, ijk->j", "data": ["A", "G"]}


class TestEinsumTensorContract7(TestEinsum):
292

293 294 295 296 297
    def setUp(self):
        self.sample = {"paradigm": "ijk, ik->jk", "data": ["G", "A"]}


class TestEinsumEllipsis1(TestEinsum):
298

299 300 301 302 303
    def setUp(self):
        self.sample = {"paradigm": "i...->...", "data": ["G"]}


class TestEinsumEllipsis2(TestEinsum):
304

305 306 307 308 309
    def setUp(self):
        self.sample = {"paradigm": "ij,...i->j...", "data": ["A", "H"]}


class TestEinsumEllipsis3(TestEinsum):
310

311 312 313 314 315
    def setUp(self):
        self.sample = {"paradigm": "k...,jk", "data": ["F", "I"]}


class TestEinsumTestEinsumBilinear(TestEinsum):
316

317 318 319 320 321
    def setUp(self):
        self.sample = {"paradigm": "bn,anm,bm->ba", "data": ["B", "E", "I"]}


class TestEinsumTestEinsumOthers1(TestEinsum):
322

323 324 325 326 327
    def setUp(self):
        self.sample = {"paradigm": "ijkl, lmn->kmn", "data": ["F", "H"]}


class TestEinsumTestEinsumOthers2(TestEinsum):
328

329 330 331 332 333
    def setUp(self):
        self.sample = {"paradigm": "ijkl, lmn->ijn", "data": ["F", "H"]}


class TestEinsumBatch1(TestEinsum):
334

335 336 337 338 339
    def setUp(self):
        self.sample = {"paradigm": "blq,bhlk->bhlqk", "data": ["J", "K"]}


class TestNumpyTests(unittest.TestCase):
340

341 342 343 344 345 346 347 348 349 350 351 352 353 354
    def setUp(self):
        pass

    def _get_place(self, force_to_use_cpu=False):
        if force_to_use_cpu:
            return core.CPUPlace()
        else:
            if core.is_compiled_with_cuda():
                return core.CUDAPlace(0)
            return core.CPUPlace()

    def check_output_equal(self, actual, expect, rtol=1.e-5, atol=1.e-8):
        error_msg = 'Output has diff at place:{}. \nExpect: {} \nBut Got: {} in class {}'
        self.assertTrue(
355
            np.allclose(actual, expect, rtol=rtol, atol=atol),
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
            error_msg.format(paddle.get_device(), expect, actual,
                             self.__class__.__name__))

    def check_output(self, eqn, *ops):
        expect = np.einsum(eqn, *ops)
        with paddle.fluid.dygraph.guard(
                self._get_place(force_to_use_cpu=False)):
            pd_operands = [paddle.to_tensor(op) for op in ops]
            actual = paddle.einsum(eqn, *pd_operands)
            self.check_output_equal(actual.numpy(), expect)

    def test_sums(self):
        for n in range(1, 17):
            a = np.arange(n).astype('float')
            self.check_output("i->", a)

        for n in range(1, 17):
            a = np.arange(2 * 3 * n).reshape(2, 3, n).astype('float')
            self.check_output("...i->...", a)

        for n in range(1, 17):
            a = np.arange(2 * n).reshape(2, n).astype('float')
            self.check_output("i...->...", a)

        for n in range(1, 17):
            a = np.arange(2 * 3 * n).reshape(2, 3, n).astype('float')
            self.check_output("i...->...", a)

        for n in range(1, 17):
            a = np.arange(3 * n).reshape(3, n).astype('float')
            b = np.arange(2 * 3 * n).reshape(2, 3, n).astype('float')
            self.check_output("..., ...", a, b)

        for n in range(1, 17):
            a = np.arange(2 * 3 * n).reshape(2, 3, n).astype('float')
            b = np.arange(n).astype('float')
            self.check_output("...i, ...i", a, b)

        for n in range(1, 11):
            a = np.arange(n * 3 * 2).reshape(n, 3, 2).astype('float')
            b = np.arange(n).astype('float')
            self.check_output("i..., i...", a, b)

        for n in range(1, 17):
            a = (np.arange(3) + 1).astype('float')
            b = (np.arange(n) + 1).astype('float')
            self.check_output("i,j", a, b)

        for n in range(1, 17):
            a = np.arange(4 * n).reshape(4, n).astype('float')
            b = np.arange(n).astype('float')
            self.check_output("ij, j", a, b)

        for n in range(1, 17):
            a = np.arange(4 * n).reshape(4, n).astype('float')
            b = np.arange(n).astype('float')
            self.check_output("ji,j", a.T, b.T)

        for n in range(1, 17):
            a = np.arange(4 * n).reshape(4, n).astype('float')
            b = np.arange(n * 6).reshape(n, 6).astype('float')
            self.check_output("ij,jk", a, b)

        a = np.arange(12).reshape(3, 4).astype('float')
        b = np.arange(20).reshape(4, 5).astype('float')
        c = np.arange(30).reshape(5, 6).astype('float')
        self.check_output("ij,jk,kl", a, b, c)

        a = np.arange(60).reshape(3, 4, 5).astype('float')
        b = np.arange(24).reshape(4, 3, 2).astype('float')
        self.check_output("ijk, jil -> kl", a, b)

        for n in range(1, 25):
            a = np.arange(n).astype('float')
            self.check_output("...,...", a, a)
            self.check_output("i,i", a, a)

        # TODO(@xiongkun): explict broadcast in EinsumOp is not supported, it's not recommend to use einsum like this.
        #p = np.ones((10, 2)).astype('float')
        #q = np.ones((1, 2)).astype('float')
        #self.check_output('ij,ij->j', p, q)

        # TODO(@xiongkun): explict-label-broadcast in EinsumOp is not supported, it's not recommend to use einsum like this.
        #x = np.array([2., 3.]).astype('float')
        #y = np.array([4.]).astype('float')
        #self.check_output("i, i", x, y)

        # TODO(@xiongkun): explict-label-broadcast in EinsumOp is not supported, it's not recommend to use einsum like this.
        #p = np.ones((1, 5)) / 2
        #q = np.ones((5, 5)) / 2
        #self.check_output("...ij,...jk->...ik", p, p)
        #self.check_output("...ij,...jk->...ik", p, q)

        x = np.eye(2).astype('float')
        y = np.ones(2).astype('float')
        self.check_output("ji,i->", x, y)
        self.check_output("i,ij->", y, x)
        self.check_output("ij,i->", x, y)

    def test_large_nops(self):
        pass
        # TODO(@xiongkun): explict broadcast in EinsumOp is not supported, it's not recommend to use einsum like this.
        #a = np.arange(4 * 3 * 1 * 4).reshape(4, 3, 1, 4).astype('float')
        #self.check_output('a...b,b...c,c...d', a, a, a)
        #self.check_output('a...b,b...c,c...a', a, a, a)
        #self.check_output('a...b,b...c,c...a', a, a, a)
        #self.check_output('...ab,...ba,...ab,...ab', a, a, a, a)

    def test_static_graph(self):
        paddle.enable_static()
        fluid = paddle.fluid
        if fluid.core.is_compiled_with_cuda():
            self.place = fluid.CUDAPlace(0)
        else:
            self.place = fluid.CPUPlace()
        main = fluid.Program()
        startup = fluid.Program()
        with fluid.program_guard(main, startup):
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
            a = paddle.static.data(name='a',
                                   shape=[3, None, None, None],
                                   dtype='float')
            b = paddle.static.data(name='b',
                                   shape=[2, None, None, None],
                                   dtype='float')
            c = paddle.static.data(name='c',
                                   shape=[None, None, 2, None],
                                   dtype='float')
            d = paddle.static.data(name='d',
                                   shape=[None, None, 5],
                                   dtype='float')
            e = paddle.static.data(name='e',
                                   shape=[None, 2, None],
                                   dtype='float')
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514

            outs = []
            outs.append(paddle.einsum("ibnd,jbnd->bnij", a, b))
            outs.append(paddle.einsum('...ik, ...j', c, d))
            outs.append(paddle.einsum('...kj, ...ik', d, e))
            outs.append(paddle.einsum('ijk..., ikj', c, e))
            outs.append(paddle.einsum('ijk..., ikj->...ij', c, e))
        exe = fluid.Executor(self.place)
        exe.run(startup)
        a = np.arange(72).reshape(3, 2, 3, 4).astype('float')
        b = np.arange(48).reshape(2, 2, 3, 4).astype('float')
        c = np.arange(48).reshape(2, 3, 2, 4).astype('float')
        d = np.arange(30).reshape(2, 3, 5).astype('float')
        e = np.arange(12).reshape(2, 2, 3).astype('float')
        feeds = {'a': a, 'b': b, 'c': c, 'd': d, 'e': e}
        actual = exe.run(main, feed=feeds, fetch_list=[outs])
        expect = []
        expect.append(np.einsum("ibnd,jbnd->bnij", a, b))
        expect.append(np.einsum('...ik, ...j', c, d))
        expect.append(np.einsum('...kj, ...ik', d, e))
        expect.append(np.einsum('ijk..., ikj', c, e))
        expect.append(np.einsum('ijk..., ikj->...ij', c, e))
        for a, e in zip(actual, expect):
            self.check_output_equal(a, e)


515
class TestStaticGraphShape(unittest.TestCase):
516

517 518 519 520 521 522 523 524 525 526 527 528 529
    def setUp(self):
        paddle.enable_static()

    def tearDown(self):
        paddle.disable_static()

    def test_shape(self):
        A = paddle.static.data(name='x', shape=[-1])
        B = paddle.static.data(name='y', shape=[384])
        C = paddle.einsum('i,d->id', A, B)
        self.assertEqual(C.shape, (-1, 384))


530 531 532 533 534 535
class TestBF16(unittest.TestCase):
    """
    EinsumOp support bfloat16 type, add unittest here for the correctness.
    """

    def test_shape(self):
536 537
        if paddle.is_compiled_with_cuda() and _is_gpu_bfloat16_supported():
            """ MatmulKernel support bfloat16 only if cuda_major >= 11.0 and Compute Capability >= 8.0
538 539 540 541 542 543
            """
            A = paddle.to_tensor(np.array([1.0, 2.0])).astype(paddle.bfloat16)
            A = A.cuda()
            B = paddle.to_tensor(np.array([2.0, 3.0])).astype(paddle.bfloat16)
            B = B.cuda()
            C = paddle.einsum('i,i->', A, B)
544
            self.assertEqual(C.astype(paddle.float32).item(), 8.0)
545 546


X
xiongkun 已提交
547 548 549 550 551 552 553 554 555 556 557 558 559 560
class TestComplex(unittest.TestCase):
    """
    EinsumOp support Complex type
    """

    def test_shape(self):
        a = paddle.rand([4, 4])
        b = paddle.rand([4, 4])
        c = paddle.einsum('xy,yz->xz', a, b)
        a = paddle.cast(a, 'complex64')
        b = paddle.cast(b, 'complex64')
        c = paddle.einsum('xy,yz->xz', a, b)


561
if __name__ == "__main__":
562
    unittest.main()