multihead_matmul_op.cc 4.8 KB
Newer Older
P
Pei Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
16
#include "paddle/fluid/inference/tensorrt/plugin/qkv_to_context_plugin.h"
P
Pei Yang 已提交
17 18 19 20 21 22 23 24 25

namespace paddle {
namespace inference {
namespace tensorrt {

class MultiheadMatMulOpConverter : public OpConverter {
 public:
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
26
#if IS_TRT_VERSION_GE(6000)
P
Pei Yang 已提交
27 28 29 30
    VLOG(3) << "convert a fluid multihead_mamul op to a corresponding tensorrt "
               "network structure";
    framework::OpDesc op_desc(op, nullptr);
    // Declare inputs
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    // Shouble be a 5 dims tensor.
    auto* input = engine_->GetITensor(op_desc.Input("Input").front());
    auto* input_bias_qk = engine_->GetITensor(op_desc.Input("BiasQK").front());

    // fc weights and fc bias
    auto weight_name = op_desc.Input("W").front();
    auto bias_name = op_desc.Input("Bias").front();

    auto* weight_v = scope.FindVar(weight_name);
    auto* weight_t = weight_v->GetMutable<framework::LoDTensor>();

    auto* bias_v = scope.FindVar(bias_name);
    auto* bias_t = bias_v->GetMutable<framework::LoDTensor>();

    float* weight_data =
        engine_->GetWeightCPUData(weight_name, weight_t, false);
    float* bias_data = engine_->GetWeightCPUData(bias_name, bias_t, false);
    std::vector<float> weight_data_tmp;
    weight_data_tmp.reserve(weight_t->numel());
    memcpy(weight_data_tmp.data(), weight_data,
           weight_t->numel() * sizeof(float));

    //  (hidden, 3, all_head_size)
    auto weight_dims = weight_t->dims();

    int hidden = weight_dims[0];         // channels_in
    int three = weight_dims[1];          // channels_out
    int all_head_size = weight_dims[2];  // channels_out
    int m = hidden;
    int n = three * all_head_size;
    auto tranpose_weight = [](const float* src, float* dst, int m, int n) {
      for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
          dst[j * m + i] = src[i * n + j];
        }
      }
    };

    // transpose weight_data from m * n to  n * m
    tranpose_weight(weight_data_tmp.data(), weight_data, m, n);
    TensorRTEngine::Weight weight{nvinfer1::DataType::kFLOAT,
                                  static_cast<void*>(weight_data),
                                  static_cast<size_t>(weight_t->numel())};

    weight.dims.assign({n, m});
    TensorRTEngine::Weight bias{nvinfer1::DataType::kFLOAT,
                                static_cast<void*>(bias_data),
                                static_cast<size_t>(bias_t->numel())};

    auto* fc_layer = TRT_ENGINE_ADD_LAYER(engine_, FullyConnected, *input, n,
                                          weight.get(), bias.get());
    auto* fc_out = fc_layer->getOutput(0);
    // add qkv to context
84
    int head_number = BOOST_GET_CONST(int, op_desc.GetAttr("head_number"));
85
    int head_size = all_head_size / head_number;
86
    float scale = BOOST_GET_CONST(float, op_desc.GetAttr("alpha"));
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

    std::vector<nvinfer1::ITensor*> plugin_inputs;
    plugin_inputs.push_back(fc_out);
    plugin_inputs.push_back(input_bias_qk);
    nvinfer1::ILayer* layer = nullptr;
    if (engine_->with_dynamic_shape()) {
      bool ban_fp16 = engine_->disable_trt_plugin_fp16();
      plugin::DynamicPluginTensorRT* plugin =
          new plugin::QkvToContextPluginDynamic(hidden, head_number, head_size,
                                                scale, ban_fp16);
      layer = engine_->AddPluginV2(plugin_inputs.data(), 2, plugin);
    } else {
      PADDLE_THROW(platform::errors::Fatal(
          "You are running the Ernie(Bert) model in static shape mode, which "
          "is not supported for the time being.\n"
          "You can use the config.SetTRTDynamicShapeInfo(...) interface to set "
          "the shape information to run the dynamic shape mode."));
    }
    auto output_name = op_desc.Output("Out")[0];
    RreplenishLayerAndOutput(layer, "multihead_matmul", {output_name},
                             test_mode);
#else
    PADDLE_THROW(platform::errors::Fatal(
        "You are running the TRT Dynamic Shape mode, need to confirm that "
        "your TRT version is no less than 6.0"));
#endif
P
Pei Yang 已提交
113 114 115 116 117 118 119 120
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

REGISTER_TRT_OP_CONVERTER(multihead_matmul, MultiheadMatMulOpConverter);