test_dgc_optimizer.py 4.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest

import paddle.fluid.framework as framework
import paddle.fluid.optimizer as optimizer
import paddle.compat as cpt
from paddle.fluid.backward import append_backward
from paddle.fluid.transpiler.details import program_to_code


class TestDGCMomentumOptimizer(unittest.TestCase):
    class MockDGCMomentum(optimizer.DGCMomentumOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_velocity_str(self):
32
            return self._u_velocity_acc_str
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

    def check_dgc_momentum_optimizer(self, dims=[5, 10, 8], name="momentum"):
        init_program = framework.Program()
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32",
            shape=[dims[0], dims[1]],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1})
        mul_y = block.create_var(
            dtype="float32",
            shape=[dims[1], dims[2]],
            lod_level=0,
            name="mul.y")
        mul_out = block.create_var(
            dtype="float32",
            shape=[dims[0], dims[2]],
            lod_level=0,
            name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
        learning_rate = 0.01
        dgc_momentum_optimizer = self.MockDGCMomentum(
            learning_rate=learning_rate, momentum=0.2, rampup_begin_step=0)
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
        # params_grads = append_backward(mean_out)
        params_grads = dgc_momentum_optimizer.backward(mean_out)
69
        accumulator_count = 1 if name == "momentum" else 2
70
        self.assertEqual(len(params_grads), 1)
71 72
        self.assertEqual(
            len(dgc_momentum_optimizer.get_accumulators()), accumulator_count)
73 74 75 76 77 78 79 80 81
        with framework.program_guard(program, init_program):
            opts = dgc_momentum_optimizer.apply_gradients(params_grads)
        self.assertEqual(len(opts), 2)
        sgd_op = opts[-1]
        self.assertEqual([op.type for op in opts], ["scale", name])
        self.assertFalse(sgd_op.attr('use_nesterov'))

        # Check accumulators
        accumulators = dgc_momentum_optimizer.get_accumulators()
82
        self.assertEqual(len(accumulators), accumulator_count)
83 84 85 86 87 88 89 90
        self.assertTrue(
            dgc_momentum_optimizer.get_velocity_str() in accumulators)
        velocity_acc = accumulators[dgc_momentum_optimizer.get_velocity_str()]
        self.assertEqual(len(velocity_acc), 1)
        self.assertTrue(mul_x.name in velocity_acc)

        # Check init_program
        init_ops = init_program.global_block().ops
91
        self.assertEqual(len(init_ops), 1)
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)

        with open("test_dgc_optimizer_" + name + ".log", "w") as f:
            program_to_code(program, fout=f)

    def test_momentum_without_dgc(self):
        self.check_dgc_momentum_optimizer()

    def test_momentum_with_dgc(self):
        # 16 * 1024 = 16384, use dgc momentum
        self.check_dgc_momentum_optimizer(
            dims=[16, 1024, 8], name="dgc_momentum")


if __name__ == '__main__':
    unittest.main()