vol2col.cu 8.3 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/math/vol2col.h"
#include "paddle/platform/cuda_helper.h"

namespace paddle {
namespace operators {
namespace math {

template <class T>
__global__ void vol2col(int num_kernels, const T* data_vol, int depth,
                        int height, int width, int filter_depth,
                        int filter_height, int filter_width, int stride_depth,
                        int stride_height, int stride_width, int padding_depth,
                        int padding_height, int padding_width, int output_detph,
                        int output_height, int output_width, T* data_col) {
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < num_kernels;
       index += blockDim.x * gridDim.x) {
    int w_out = index % output_width;
    int h_out = (index / output_width) % output_height;
    int d_out = (index / output_width / output_height) % output_detph;
    int channel_in = index / output_width / output_height / output_detph;
    int channel_out = channel_in * filter_depth * filter_height * filter_width;
    int w_in = w_out * stride_width - padding_width;
    int h_in = h_out * stride_height - padding_height;
    int d_in = d_out * stride_depth - padding_depth;

    data_col += ((channel_out * output_detph + d_out) * output_height + h_out) *
                    output_width +
                w_out;
    data_vol += ((channel_in * depth + d_in) * height + h_in) * width + w_in;
    for (int k = 0; k < filter_depth; ++k) {
      for (int i = 0; i < filter_height; ++i) {
        for (int j = 0; j < filter_width; ++j) {
          int d = d_in + k;
          int h = h_in + i;
          int w = w_in + j;
          *data_col = (d >= 0 && d < depth && h >= 0 && h < height && w >= 0 &&
                       w < width)
                          ? data_vol[(k * height + i) * width + j]
                          : 0;
          data_col += output_detph * output_height * output_width;
        }
      }
    }
  }
}

/*
 * im = [input_channels,intpu_depth, input_height, input_width]
 * col =
 *   [input_channels, filter_depth, filter_height, filter_width,
 *                    output_depth, output_height, output_width]
 */
template <class T>
class Vol2ColFunctor<platform::GPUPlace, T> {
 public:
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& vol, framework::Tensor& col,
                  int stride_depth, int stride_height, int stride_width,
                  int padding_depth, int padding_height,
                  int padding_width) const {
    PADDLE_ENFORCE(vol.dims().size() == 4);
    PADDLE_ENFORCE(col.dims().size() == 7);

    int input_channels = vol.dims()[0];
    int input_depth = vol.dims()[1];
    int input_height = vol.dims()[2];
    int input_width = vol.dims()[3];
    int filter_depth = col.dims()[1];
    int filter_height = col.dims()[2];
    int filter_width = col.dims()[3];
    int output_depth = col.dims()[4];
    int output_height = col.dims()[5];
    int output_width = col.dims()[6];

    int num_outputs =
        input_channels * output_depth * output_height * output_width;

    const int threads = 1024;
    const int blocks = (num_outputs + 1024 - 1) / 1024;
    vol2col<T><<<blocks, threads, 0,
                 reinterpret_cast<const platform::CUDADeviceContext&>(context)
                     .stream()>>>(
        num_outputs, vol.data<T>(), input_depth, input_height, input_width,
        filter_depth, filter_height, filter_width, stride_depth, stride_height,
        stride_width, padding_depth, padding_height, padding_width,
        output_depth, output_height, output_width, col.data<T>());
  }
};

template <class T>
__global__ void col2vol(int num_kernels, const T* data_col, int depth,
                        int height, int width, int filter_depth,
                        int filter_height, int filter_width, int stride_depth,
                        int stride_height, int stride_width, int padding_depth,
                        int padding_height, int padding_width, int output_detph,
                        int output_height, int output_width, T* data_vol) {
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < num_kernels;
       index += blockDim.x * gridDim.x) {
    T src_val = 0;
    int w = index % width + padding_width;
    int h = (index / width) % height + padding_height;
    int d = (index / width / height) % depth + padding_depth;
    int c = index / width / height / depth;
    // compute the start and end of the output
    int w_col_start =
        (w < filter_width) ? 0 : (w - filter_width) / stride_width + 1;
    int w_col_end = min(w / stride_width + 1, output_width);
    int h_col_start =
        (h < filter_height) ? 0 : (h - filter_height) / stride_height + 1;
    int h_col_end = min(h / stride_height + 1, output_height);
    int d_col_start =
        (d < filter_depth) ? 0 : (d - filter_depth) / stride_depth + 1;
    int d_col_end = min(d / stride_depth + 1, output_detph);

    int offset = (c * filter_depth * filter_height * filter_width +
                  d * filter_width * filter_height + h * filter_width + w) *
                 output_detph * output_height * output_width;

    int coeff_d_col =
        (1 - stride_depth * filter_width * filter_height * output_detph) *
        output_height * output_width;
    int coeff_h_col =
        (1 - stride_height * filter_width * output_detph * output_height) *
        output_width;
    int coeff_w_col =
        (1 - stride_width * output_detph * output_height * output_width);

    for (int d_col = d_col_start; d_col < d_col_end; ++d_col) {
      for (int h_col = h_col_start; h_col < h_col_end; ++h_col) {
        for (int w_col = w_col_start; w_col < w_col_end; ++w_col) {
          src_val += data_col[offset + d_col * coeff_d_col +
                              h_col * coeff_h_col + w_col * coeff_w_col];
        }
      }
    }
    data_vol[index] = src_val;
  }
}

/*
 * im = [input_channels, input_depth, input_height, input_width]
 * col =
 *   [input_channels, filter_depth, filter_height, filter_width,
 *                    output_depth, output_height, output_width]
 */
template <class T>
class Col2VolFunctor<platform::GPUPlace, T> {
 public:
  void operator()(const platform::DeviceContext& context,
                  framework::Tensor& vol, const framework::Tensor& col,
                  int stride_depth, int stride_height, int stride_width,
                  int padding_depth, int padding_height,
                  int padding_width) const {
    PADDLE_ENFORCE(vol.dims().size() == 4);
    PADDLE_ENFORCE(col.dims().size() == 7);

    int input_channels = vol.dims()[0];
    int input_depth = vol.dims()[1];
    int input_height = vol.dims()[2];
    int input_width = vol.dims()[3];
    int filter_depth = col.dims()[1];
    int filter_height = col.dims()[2];
    int filter_width = col.dims()[3];
    int output_depth = col.dims()[4];
    int output_height = col.dims()[5];
    int output_width = col.dims()[6];

    int num_kernels = input_channels * input_depth * input_height * input_width;

    const int threads = 1024;
    const int blocks = (num_kernels + 1024 - 1) / 1024;

    col2vol<T><<<blocks, threads, 0,
                 reinterpret_cast<const platform::CUDADeviceContext&>(context)
                     .stream()>>>(
        num_kernels, col.data<T>(), input_depth, input_height, input_width,
        filter_depth, filter_height, filter_width, stride_depth, stride_height,
        stride_width, padding_depth, padding_height, padding_width,
        output_depth, output_height, output_width, vol.data<T>());
  }
};

template class Vol2ColFunctor<platform::GPUPlace, float>;
template class Vol2ColFunctor<platform::GPUPlace, double>;
template class Col2VolFunctor<platform::GPUPlace, float>;
template class Col2VolFunctor<platform::GPUPlace, double>;

}  // namespace math
}  // namespace operators
}  // namespace paddle