common.py 10.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

15
import abc
16 17
from ..dist_attribute import OperatorDistributedAttribute

18 19
_g_distributed_operator_impl_containers = {}

20
_g_elementwise_ops = [
21
    "elementwise", "gelu", "dropout", "cast", "gather", "concat"
22
]
23
BACKWARD_ONLY_DIST_OPS = {'check_finite_and_unscale', 'update_loss_scaling'}
24 25


26
def is_elementwise_op(op_type):
27 28 29 30
    if op_type in _g_elementwise_ops:
        return True
    if "elementwise" in op_type:
        return True
31
    return False
32 33


34
class DistributedOperatorImplContainer:
35 36
    def __init__(self, op_type):
        self._type = op_type
37
        self._impls = []
38 39 40 41 42 43 44 45 46 47 48 49

    @property
    def type(self):
        return self._type

    @type.setter
    def type(self, op_type):
        self._type = op_type

    @property
    def impls(self):
        return self._impls
50 51

    def register_impl(self, dist_impl):
52 53 54 55
        assert self.type == dist_impl.type, \
            "Op type of container must be same as that of the implementation."
        impl_idx = len(self.impls)
        dist_impl.idx = impl_idx
56 57 58 59 60
        self._impls.append(dist_impl)

    def get_impl(self, impl_idx):
        return self._impls[impl_idx]

61 62 63 64 65 66
    def get_input_compatible_impls(self, dist_op):
        compatible_impls = []
        for impl in self.impls:
            if impl.is_input_compatible(dist_op):
                compatible_impls.append(impl)
        return compatible_impls
67

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
    def get_output_compatible_impls(self, dist_op):
        compatible_impls = []
        for impl in self.impls:
            if impl.is_output_compatible(dist_op):
                compatible_impls.append(impl)
        return compatible_impls

    def get_compatible_impls(self, dist_op):
        compatible_impls = []
        for impl in self.impls:
            if impl.is_auto_compatible(dist_op):
                compatible_impls.append(impl)
        return compatible_impls


class DistributedOperatorImpl(abc.ABC):
    def __init__(self, name):
        self._name = name
        self._type = None
        self._idx = None
88 89
        self._forward_implemented = False
        self._backward_implemented = False
90

91 92 93
    @property
    def name(self):
        return self._name
94

95 96 97
    @name.setter
    def name(self, name):
        self._name = name
98

99 100 101 102 103 104 105 106 107 108 109
    @property
    def type(self):
        return self._type

    @type.setter
    def type(self, op_type):
        self._type = op_type

    @property
    def idx(self):
        return self._idx
110

111 112 113 114 115
    @idx.setter
    def idx(self, impl_idx):
        self._idx = impl_idx

    @abc.abstractmethod
116
    def is_input_compatible(self, dist_op):
117 118
        raise NotImplementedError("Please Implement this method in Subclass.")

119
    @abc.abstractmethod
120
    def is_output_compatible(self, dist_op):
121 122
        raise NotImplementedError("Please Implement this method in Subclass.")

123
    @abc.abstractmethod
沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
124 125 126
    def is_auto_compatible(self, dist_op):
        raise NotImplementedError("Please Implement this method in Subclass.")

127 128 129 130 131 132 133 134 135 136
    @staticmethod
    @abc.abstractmethod
    def forward(dist_ctx, *args, **kwargs):
        raise NotImplementedError("Please Implement this method in Subclass.")

    @staticmethod
    @abc.abstractmethod
    def backward(dist_ctx, *grad_outputs, **kwargs):
        raise NotImplementedError("Please Implement this method in Subclass.")

137
    def update_dims_mapping(self, dist_op):
138 139 140
        raise NotImplementedError("Please Implement this method in Subclass.")


141 142 143
def register_distributed_operator_impl_container(container):
    global _g_distributed_operator_impl_containers
    _g_distributed_operator_impl_containers[container.type] = container
144 145


146 147 148
def get_distributed_operator_impl_container(op_type):
    global _g_distributed_operator_impl_containers
    return _g_distributed_operator_impl_containers.get(op_type, None)
149 150


151 152
def register_distributed_operator_impl(op_type, dist_impl):
    dist_op_impl_container = get_distributed_operator_impl_container(op_type)
153
    if dist_op_impl_container is not None:
154
        dist_impl.type = op_type
155
        dist_op_impl_container.register_impl(dist_impl)
156
    else:
157
        assert False, "Must register distributed operator registry first."
158 159


160
def find_compatible_distributed_operator_impls(dist_op, fwd=True, partial=True):
161 162 163 164
    """
    Here just return the first compatible implemention. 
    This will be improved by cost model in the future.
    """
165 166 167 168 169 170
    op_type = dist_op.serial_op.type
    dist_op_impl_container = get_distributed_operator_impl_container(op_type)
    dist_op_eltwise_impl_container = get_distributed_operator_impl_container(
        "elementwise")
    dist_op_default_impl_container = get_distributed_operator_impl_container(
        "default")
171
    compatible_impls = []
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
    if partial:
        if fwd:
            # First, find impls in the corresponding container
            if dist_op_impl_container:
                compatible_impls.extend(
                    dist_op_impl_container.get_input_compatible_impls(dist_op))
            # Second, find impls in the elementwise container
            if dist_op_eltwise_impl_container and is_elementwise_op(op_type):
                compatible_impls.extend(
                    dist_op_eltwise_impl_container.get_input_compatible_impls(
                        dist_op))
            # Third, find impls in the default container
            if dist_op_default_impl_container:
                compatible_impls.extend(
                    dist_op_default_impl_container.get_input_compatible_impls(
                        dist_op))
        else:
            # First, find impls in the corresponding container
            if dist_op_impl_container:
                compatible_impls.extend(
                    dist_op_impl_container.get_output_compatible_impls(dist_op))
            # Second, find impls in the elementwise container
            if dist_op_eltwise_impl_container and is_elementwise_op(op_type):
                compatible_impls.extend(
                    dist_op_eltwise_impl_container.get_output_compatible_impls(
                        dist_op))
            # Third, find impls in the default container
            if dist_op_default_impl_container:
                compatible_impls.extend(
                    dist_op_default_impl_container.get_output_compatible_impls(
                        dist_op))
203
    else:
204 205 206
        # First, find impls in the corresponding container
        if dist_op_impl_container:
            compatible_impls.extend(
207
                dist_op_impl_container.get_compatible_impls(dist_op))
208 209 210
        # Second, find impls in the elementwise container
        if dist_op_eltwise_impl_container and is_elementwise_op(op_type):
            compatible_impls.extend(
211
                dist_op_eltwise_impl_container.get_compatible_impls(dist_op))
212 213 214
        # Third, find impls in the default container
        if dist_op_default_impl_container:
            compatible_impls.extend(
215 216
                dist_op_default_impl_container.get_compatible_impls(dist_op))

217
    if compatible_impls:
218
        # For now, just return the first compatible impl
219 220
        # best_compatible_impl = compatible_impls[0]
        best_compatible_impl = compatible_impls
221
    else:
222 223
        best_compatible_impl = None
    return best_compatible_impl
224 225


J
JZ-LIANG 已提交
226
def is_parameter_related(varname, block):
227 228
    if ".subprog_" in varname:
        varname = varname[:varname.index(".subprog_")]
J
JZ-LIANG 已提交
229 230 231 232 233 234 235
    if ".cast_fp" in varname:
        varname = varname[:varname.index(".cast_fp")]
    assert block.has_var(varname)
    var = block.var(varname)
    return var.is_parameter


Z
zhaoyingli 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
def infer_shape(block, src_var, src_var_dist_attr, op_input_dist_attr):
    var_shape = block.var(src_var.name).shape
    var_topoloy = src_var_dist_attr.process_mesh.topology
    var_dims_mapping = src_var_dist_attr.dims_mapping

    complete_shape = []
    for idx, shape in enumerate(var_shape):
        if var_dims_mapping[idx] == -1:
            complete_shape.append(shape)
        else:
            new_shape = shape * var_topoloy[var_dims_mapping[idx]]
            complete_shape.append(new_shape)

    exact_shape = []
    input_topology = op_input_dist_attr.process_mesh.topology
    input_dims_mapping = op_input_dist_attr.dims_mapping
    for idx, shape in enumerate(complete_shape):
        if input_dims_mapping[idx] == -1:
            exact_shape.append(shape)
        else:
            new_shape = shape // input_topology[input_dims_mapping[idx]]
            exact_shape.append(new_shape)

    return exact_shape
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302


def set_comm_op_dist_attr_for_program(new_op, process_mesh, tensor_dist_attr,
                                      ctx):
    assert process_mesh is not None
    assert tensor_dist_attr is not None

    new_op_dist_attr = OperatorDistributedAttribute()
    new_op_dist_attr.process_mesh = process_mesh
    for input_varname in new_op.desc.input_arg_names():
        new_op_dist_attr.set_input_dist_attr(input_varname, tensor_dist_attr)
    for output_varname in new_op.desc.output_arg_names():
        new_op_dist_attr.set_output_dist_attr(output_varname, tensor_dist_attr)
    ctx.set_op_dist_attr_for_program(new_op, new_op_dist_attr)


def naive_copy_op_dist_attr_for_program(new_op, ref_op, ctx):

    ref_dist_attr = ctx.get_op_dist_attr_for_program(ref_op)
    new_op_dist_attr = OperatorDistributedAttribute()
    new_op_dist_attr.process_mesh = ref_dist_attr.process_mesh

    for input_name in ref_op.input_names:
        assert input_name in new_op.input_names
        assert len(ref_op.input(input_name)) == 1
        assert len(new_op.input(input_name)) == 1

        ref_tensor_dist_attr = ref_dist_attr.get_input_dist_attr(
            ref_op.input(input_name)[0])
        new_op_dist_attr.set_input_dist_attr(
            new_op.input(input_name)[0], ref_tensor_dist_attr)

    for output_name in ref_op.output_names:
        assert output_name in new_op.output_names
        assert len(ref_op.output(output_name)) == 1
        assert len(new_op.output(output_name)) == 1

        ref_tensor_dist_attr = ref_dist_attr.get_output_dist_attr(
            ref_op.output(output_name)[0])
        new_op_dist_attr.set_output_dist_attr(
            new_op.output(output_name)[0], ref_tensor_dist_attr)

    ctx.set_op_dist_attr_for_program(new_op, new_op_dist_attr)