adam_op.cc 12.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/optimizers/adam_op.h"
16
#include "paddle/fluid/framework/op_version_registry.h"
R
Roc 已提交
17
#include "paddle/fluid/operators/optimizers/adamw_op.h"
18 19 20 21

namespace paddle {
namespace operators {

D
dzhwinter 已提交
22
using Tensor = framework::Tensor;
23

24
void AdamOp::InferShape(framework::InferShapeContext *ctx) const {
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
  PADDLE_ENFORCE_EQ(
      ctx->HasInput("Param"), true,
      platform::errors::NotFound("Input(Param) of AdamOp should not be null."));
  PADDLE_ENFORCE_EQ(
      ctx->HasInput("Grad"), true,
      platform::errors::NotFound("Input(Grad) of AdamOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasInput("Moment1"), true,
                    platform::errors::NotFound(
                        "Input(Moment1) of AdamOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasInput("Moment2"), true,
                    platform::errors::NotFound(
                        "Input(Moment2) of AdamOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasInput("LearningRate"), true,
                    platform::errors::NotFound(
                        "Input(LearningRate) of AdamOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasInput("Beta1Pow"), true,
                    platform::errors::NotFound(
                        "Input(Beta1Pow) of AdamOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasInput("Beta2Pow"), true,
                    platform::errors::NotFound(
                        "Input(Beta2Pow) of AdamOp should not be null."));

  PADDLE_ENFORCE_EQ(ctx->HasOutput("ParamOut"), true,
                    platform::errors::NotFound(
                        "Output(ParamOut) of AdamOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasOutput("Moment1Out"), true,
                    platform::errors::NotFound(
                        "Output(Moment1Out) of AdamOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasOutput("Moment2Out"), true,
                    platform::errors::NotFound(
                        "Output(Moment2Out) of AdamOp should not be null."));
56

Y
Yibing Liu 已提交
57
  auto lr_dims = ctx->GetInputDim("LearningRate");
A
Aurelius84 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71
  PADDLE_ENFORCE_NE(
      framework::product(lr_dims), 0,
      platform::errors::InvalidArgument(
          "The number of LearningRate shall not be 0, but received %d. Maybe "
          "the Input variable LearningRate has not "
          "been initialized. You may need to confirm "
          "if you put exe.run(startup_program) "
          "after optimizer.minimize function.",
          framework::product(lr_dims)));
  PADDLE_ENFORCE_EQ(
      framework::product(lr_dims), 1,
      platform::errors::InvalidArgument(
          "Learning rate should have 1 dimension, but received %d",
          framework::product(lr_dims)));
Y
Yibing Liu 已提交
72
  auto beta1_pow_dims = ctx->GetInputDim("Beta1Pow");
A
Aurelius84 已提交
73 74 75 76 77 78
  VLOG(3) << "dims of Beta1Pow : [" << beta1_pow_dims << "]";
  PADDLE_ENFORCE_GE(framework::product(beta1_pow_dims), 1,
                    platform::errors::InvalidArgument(
                        "The size of Beta1 power accumulator should be greater "
                        "than 0, but received %d.",
                        framework::product(beta1_pow_dims)));
Y
Yibing Liu 已提交
79
  auto beta2_pow_dims = ctx->GetInputDim("Beta2Pow");
A
Aurelius84 已提交
80 81 82 83 84 85
  VLOG(3) << "dims of Beta2Pow : [" << beta2_pow_dims << "]";
  PADDLE_ENFORCE_GE(framework::product(beta2_pow_dims), 1,
                    platform::errors::InvalidArgument(
                        "The size of Beta2 power accumulator should be greater "
                        "than 0, but received %d.",
                        framework::product(beta2_pow_dims)));
86

Y
Yibing Liu 已提交
87 88 89
  auto param_dims = ctx->GetInputDim("Param");
  if (ctx->GetInputsVarType("Grad")[0] ==
      framework::proto::VarType::LOD_TENSOR) {
90
    PADDLE_ENFORCE_EQ(
Y
Yibing Liu 已提交
91
        param_dims, ctx->GetInputDim("Grad"),
A
Aurelius84 已提交
92 93 94 95
        platform::errors::InvalidArgument(
            "Param and Grad input of AdamOp should have same dimension. But "
            "received Param dims: [%s], Grad dims: [%s].",
            param_dims, ctx->GetInputDim("Grad")));
96
  }
Y
Yibing Liu 已提交
97 98
  PADDLE_ENFORCE_EQ(
      param_dims, ctx->GetInputDim("Moment1"),
A
Aurelius84 已提交
99 100 101 102
      platform::errors::InvalidArgument(
          "Param and Moment1 input of AdamOp should have same dimension. But "
          "received Param dims: [%s], Moment1 dims: [%s].",
          param_dims, ctx->GetInputDim("Moment1")));
Y
Yibing Liu 已提交
103 104
  PADDLE_ENFORCE_EQ(
      param_dims, ctx->GetInputDim("Moment2"),
A
Aurelius84 已提交
105 106 107 108
      platform::errors::InvalidArgument(
          "Param and Moment2 input of AdamOp should have same dimension. But "
          "received Param dims: [%s], Moment2 dims: [%s].",
          param_dims, ctx->GetInputDim("Moment2")));
Y
Yibing Liu 已提交
109 110 111 112

  ctx->SetOutputDim("ParamOut", param_dims);
  ctx->SetOutputDim("Moment1Out", param_dims);
  ctx->SetOutputDim("Moment2Out", param_dims);
A
Aurelius84 已提交
113 114
  ctx->SetOutputDim("Beta1PowOut", beta1_pow_dims);
  ctx->SetOutputDim("Beta2PowOut", beta2_pow_dims);
Y
Yibing Liu 已提交
115 116 117
}

framework::OpKernelType AdamOp::GetExpectedKernelType(
118
    const framework::ExecutionContext &ctx) const {
119
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Param");
Y
Yibing Liu 已提交
120 121
  return framework::OpKernelType(input_data_type, ctx.GetPlace());
}
122

123 124 125
framework::OpKernelType AdamOp::GetKernelTypeForVar(
    const std::string &var_name, const framework::Tensor &tensor,
    const framework::OpKernelType &expected_kernel_type) const {
126 127
  if (var_name == "Beta1Pow" || var_name == "Beta2Pow" ||
      var_name == "SkipUpdate") {
128 129 130 131 132 133 134
    return expected_kernel_type;
  } else {
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
}

135 136
class AdamOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
137
  void Make() override {
138 139 140 141 142 143 144 145
    AddInput("Param", "(Tensor) Input parameter");
    AddInput("Grad", "(Tensor) Input gradient");
    AddInput("LearningRate", "(Tensor) Learning rate");
    AddInput("Moment1", "(Tensor) Input first moment");
    AddInput("Moment2", "(Tensor) Input second moment");
    AddInput("Beta1Pow", "(Tensor) Input beta1 power accumulator");
    AddInput("Beta2Pow", "(Tensor) Input beta2 power accumulator");

146 147 148 149 150 151 152 153 154 155
    AddInput("Beta1Tensor",
             "(Tensor<float32>, optional) If provided, Adam will use this "
             "as beta1, this has a higher priority than attr(beta1), the "
             "shape of this tensor MUST BE [1].")
        .AsDispensable();
    AddInput("Beta2Tensor",
             "(Tensor<float32>, optional) If provided, Adam will use this "
             "as beta2, this has a higher priority than attr(beta2), the "
             "shape of this tensor MUST BE [1].")
        .AsDispensable();
156 157 158 159 160
    AddInput("EpsilonTensor",
             "(Tensor<float32>, optional) If provided, Adam will use this "
             "as epsilon, this has a higher priority than attr(epsilon), the "
             "shape of this tensor MUST BE [1].")
        .AsDispensable();
161
    AddInput("MasterParam", "FP32 master weight for AMP.").AsDispensable();
162 163
    AddInput("SkipUpdate", "(Tensor<bool>, optional), Skip the update or not.")
        .AsDispensable();
164

165 166 167
    AddOutput("ParamOut", "(Tensor) Output parameter");
    AddOutput("Moment1Out", "(Tensor) Output first moment");
    AddOutput("Moment2Out", "(Tensor) Output second moment");
A
Aurelius84 已提交
168 169
    AddOutput("Beta1PowOut", "(Tensor) Output beta1 power accumulator");
    AddOutput("Beta2PowOut", "(Tensor) Output beta2 power accumulator");
170 171 172 173
    AddOutput("MasterParamOut",
              "The updated FP32 master weight for AMP. "
              "It shared memory with Input(MasterParam).")
        .AsDispensable();
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188

    AddAttr<float>("beta1",
                   "(float, default 0.9) "
                   "Exponential decay rate for the "
                   "first moment estimates.")
        .SetDefault(0.9f);
    AddAttr<float>("beta2",
                   "(float, default 0.999) "
                   "exponential decay rate for the "
                   "second moment estimates.")
        .SetDefault(0.999f);
    AddAttr<float>("epsilon",
                   "(float, default 1.0e-8) "
                   "Constant for numerical stability")
        .SetDefault(1.0e-8f);
Q
Qiao Longfei 已提交
189
    AddAttr<bool>(
Q
Qiao Longfei 已提交
190
        "lazy_mode",
Q
Qiao Longfei 已提交
191 192 193
        "(bool, default false) "
        "only update the parameter that has gradient in sparse update")
        .SetDefault(false);
194 195 196 197 198 199
    AddAttr<int64_t>("min_row_size_to_use_multithread",
                     "(int64_t, default 0) "
                     "when not zero, if param row size is larger then "
                     "min_row_size_to_use_multithread and "
                     "inner_op_parallelism is larger then 0, sparse update "
                     "will run in multithread mode")
200
        .SetDefault(1000);
201 202 203 204
    AddAttr<bool>("multi_precision",
                  "(bool, default false) "
                  "Whether to use multi-precision during weight updating.")
        .SetDefault(false);
205 206 207 208 209 210 211
    // TODO(zhiqiu): We could set Beta1PowOut and Beta2PowOut
    // as dispensable since they are not used when use_global_beta_pow is true.
    AddAttr<bool>("use_global_beta_pow",
                  "(bool, default false) "
                  "Whether to use global beta_pow for whole model instead of "
                  "creating beta_pow for each parameter.")
        .SetDefault(false);
212 213

    AddComment(R"DOC(
214
Adam Optimizer.
215 216

This implements the Adam optimizer from Section 2 of the Adam
217 218 219
paper : https://arxiv.org/abs/1412.6980.
Adam is a first-order gradient-based optimization method based on
adaptive estimates of lower-order moments.
220 221 222

Adam updates:

223 224 225 226 227 228 229
$$
moment\_1\_out = \beta_1 * moment\_1 + (1 - \beta_1) * grad \\
moment\_2_\out = \beta_2 * moment\_2 + (1 - \beta_2) * grad * grad \\
learning\_rate = learning\_rate *
                  \frac{\sqrt{1 - \beta_{2\_pow}}}{1 - \beta_{1\_pow}} \\
param\_out = param - learning\_rate * \frac{moment\_1}{\sqrt{moment\_2} + \epsilon}
$$
230 231 232 233

)DOC");
  }
};
R
Roc 已提交
234 235 236 237 238

class AdamWOpMaker : public AdamOpMaker {
 public:
  void Make() {
    AdamOpMaker::Make();
239 240 241 242
    AddAttr<float>("lr_ratio",
                   "(float, default 1.0) "
                   "layerwise learning rate decay")
        .SetDefault(1.0f);
R
Roc 已提交
243 244 245 246 247 248 249 250 251 252 253
    AddAttr<float>("coeff",
                   "(float, default 0.01) "
                   "coeff of the weight decay")
        .SetDefault(0.01f);
    AddAttr<bool>("with_decay",
                  "(bool, default false) "
                  "whether to do weight decay")
        .SetDefault(false);
  }
};

254 255 256 257 258
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(adam, ops::AdamOp, ops::AdamOpMaker);
R
Roc 已提交
259 260 261

REGISTER_OP_WITHOUT_GRADIENT(adamw, ops::AdamWOp, ops::AdamWOpMaker);

Q
QI JUN 已提交
262 263 264
REGISTER_OP_CPU_KERNEL(
    adam, ops::AdamOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::AdamOpKernel<paddle::platform::CPUDeviceContext, double>);
265 266 267 268 269 270 271 272 273

REGISTER_OP_VERSION(adam)
    .AddCheckpoint(
        R"ROC(
      Upgrade adam add 1 attribute [multi_precision].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "multi_precision",
            "(bool) Whether to use multi-precision during weight updating.",
274 275 276 277 278 279 280 281 282
            false))
    .AddCheckpoint(
        R"ROC(
      Upgrade adam, add 1 dispensable input [EpsilonTensor].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewInput(
            "EpsilonTensor",
            "If provided, Adam will use this as epsilon, "
            "this has a higher priority than attr(epsilon). "
283 284 285 286 287 288 289 290 291 292 293 294
            "For better performance in npu kernel. "))
    .AddCheckpoint(
        R"ROC(
      Upgrade adam, add 1 attribute [use_global_beta_pow].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "use_global_beta_pow",
            "If true, Adam will use global beta_pow for whole model "
            "instead of creating beta_pow for each parameter."
            "In that case, the outputs(Beta1PowOut, Beta2PowOut) will not be "
            "used in adam op, "
            "and beta_pow will be updated after all adam op in the model.",
295 296 297 298 299 300 301
            false))
    .AddCheckpoint(
        R"ROC(
      Upgrade adam, add 1 dispensable input [SkipUpdate].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewInput(
            "SkipUpdate", "If the value is true, Adam will skip the update."));