while_op.cc 18.6 KB
Newer Older
C
chengduo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
Y
Yang Yang(Tony) 已提交
14 15

#include <vector>
Y
Yi Wang 已提交
16 17 18 19
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
S
sneaxiy 已提交
20
#include "paddle/fluid/framework/var_type.h"
S
sneaxiy 已提交
21
#include "paddle/fluid/operators/controlflow/while_op_helper.h"
Y
Yang Yang(Tony) 已提交
22 23 24 25 26 27 28

namespace paddle {
namespace operators {

using StepScopeVar = std::vector<framework::Scope *>;
using LoDTensor = framework::LoDTensor;

S
sneaxiy 已提交
29 30 31 32 33 34 35 36 37 38 39 40
namespace {  // NOLINT
static std::string GetSkipEagerDeletionVarsDebugString(
    const std::vector<std::string> &vars) {
  std::string str = "Skip " + std::to_string(vars.size()) +
                    " var(s) in eager deletion mode: ";
  for (auto &var : vars) {
    str.append(var);
    str.push_back(' ');
  }
  return str;
}
}  // NOLINT
Y
Yang Yang(Tony) 已提交
41 42 43 44 45 46 47 48

class WhileOp : public framework::OperatorBase {
 public:
  WhileOp(const std::string &type, const framework::VariableNameMap &inputs,
          const framework::VariableNameMap &outputs,
          const framework::AttributeMap &attrs)
      : framework::OperatorBase(type, inputs, outputs, attrs) {}

49 50 51
 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
Y
Yang Yang(Tony) 已提交
52
    PADDLE_ENFORCE_NOT_NULL(scope.FindVar(Input(kCondition)));
53

Y
Yang Yang(Tony) 已提交
54 55 56
    auto &cond = scope.FindVar(Input(kCondition))->Get<LoDTensor>();
    PADDLE_ENFORCE_EQ(cond.dims(), paddle::framework::make_ddim({1}));

D
dzhwinter 已提交
57
    framework::Executor executor(dev_place);
Y
Yu Yang 已提交
58
    auto *block = Attr<framework::BlockDesc *>(kStepBlock);
D
dzhwinter 已提交
59

Y
Yang Yang(Tony) 已提交
60 61 62 63
    auto *program = block->Program();

    auto step_scopes =
        scope.FindVar(Output(kStepScopes))->GetMutable<StepScopeVar>();
64 65 66 67 68 69 70 71 72 73 74

    if (step_scopes->size() > 0) {
      platform::DeviceContextPool::Instance().Get(dev_place)->Wait();
      for (auto &s : *step_scopes) {
        if (scope.HasKid(s)) {
          scope.DeleteScope(s);
        }
      }
      step_scopes->clear();
    }

75
    PADDLE_ENFORCE_EQ(step_scopes->size(), 0, "The StepScope should be empty.");
X
Xin Pan 已提交
76

77
    bool cond_data = GetCondData(cond);
C
chengduo 已提交
78
    bool is_test = Attr<bool>("is_test");
S
sneaxiy 已提交
79
    auto &skip_vars = Attr<std::vector<std::string>>(kSkipEagerDeletionVars);
S
sneaxiy 已提交
80
    VLOG(2) << GetSkipEagerDeletionVarsDebugString(skip_vars);
S
fix bug  
sneaxiy 已提交
81

S
sneaxiy 已提交
82
    auto ctx = executor.Prepare(*program, block->ID(), skip_vars);
83
    if (!is_test) {
84
      while (cond_data) {
85 86 87 88
        auto &current_scope = scope.NewScope();
        step_scopes->push_back(&current_scope);
        executor.RunPreparedContext(ctx.get(), &current_scope, false, true,
                                    true);
89 90
        cond_data =
            GetCondData(scope.FindVar(Input(kCondition))->Get<LoDTensor>());
91 92
      }
    } else {
Y
Yang Yang(Tony) 已提交
93
      auto &current_scope = scope.NewScope();
94
      executor.CreateVariables(*program, &current_scope, block->ID());
95
      while (cond_data) {
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
        for (auto &name : current_scope.LocalVarNames()) {
          auto *var = current_scope.Var(name);
          if (var->IsType<framework::LoDTensor>()) {
            // Clear all lod information for all lod_tensors.
            auto *t = var->GetMutable<framework::LoDTensor>();
            framework::LoD empty_lod;
            t->set_lod(empty_lod);
          } else if (var->IsType<framework::LoDTensorArray>()) {
            // Clear elements of all tensor arrays.
            auto *t = var->GetMutable<framework::LoDTensorArray>();
            t->clear();
          }
        }
        executor.RunPreparedContext(ctx.get(), &current_scope, false, false,
                                    false);
111 112
        cond_data =
            GetCondData(scope.FindVar(Input(kCondition))->Get<LoDTensor>());
C
chengduo 已提交
113
      }
114
      scope.DeleteScope(&current_scope);
Y
Yang Yang(Tony) 已提交
115 116 117 118 119 120
    }
  }
};

class WhileOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
121
  void Make() override {
Y
Yang Yu 已提交
122
    AddInput(kX,
Y
Yang Yang(Tony) 已提交
123 124 125 126 127 128 129
             "A set of variables, which are required by operators inside the "
             "block of While Op.")
        .AsDuplicable();
    AddInput(
        kCondition,
        "(Bool) An scalar. When it's False, the While Op will be terminated.")
        .AsDuplicable();
Y
Yang Yang(Tony) 已提交
130
    AddOutput(kOutputs,
Y
Yang Yang(Tony) 已提交
131
              "A set of variables, which will be assigned with values "
Y
Yang Yang(Tony) 已提交
132
              "generated by the operators inside the block of While Op.")
Y
Yang Yang(Tony) 已提交
133 134 135 136 137
        .AsDuplicable();
    AddOutput(kStepScopes,
              "(StepScopeVar) A vector of local scope, which size equals the "
              "step number of While Op. The i'th scope storages temporary "
              "variables generated in the i'th step.");
Y
Yu Yang 已提交
138 139
    AddAttr<framework::BlockDesc *>(kStepBlock,
                                    "The step block inside WhileOp");
140 141 142 143
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
S
sneaxiy 已提交
144
    AddAttr<std::vector<std::string>>(kSkipEagerDeletionVars,
S
fix bug  
sneaxiy 已提交
145 146 147
                                      "Vars that would skip eager deletion."
                                      "Users should not set this manually.")
        .SetDefault(std::vector<std::string>());
Y
Yang Yang(Tony) 已提交
148 149 150 151 152 153 154 155 156 157 158 159
    AddComment(R"DOC(
)DOC");
  }
};

class WhileGradOp : public framework::OperatorBase {
 public:
  WhileGradOp(const std::string &type, const framework::VariableNameMap &inputs,
              const framework::VariableNameMap &outputs,
              const framework::AttributeMap &attrs)
      : framework::OperatorBase(type, inputs, outputs, attrs) {}

160 161 162
 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
C
chengduo 已提交
163 164
    PADDLE_ENFORCE(!Attr<bool>("is_test"),
                   "GradOp is only callable when is_test is false");
165 166 167
    // get device context from pool
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(dev_place);
D
dzhwinter 已提交
168
    framework::Executor executor(dev_place);
Y
Yu Yang 已提交
169
    auto *block = Attr<framework::BlockDesc *>(kStepBlock);
Y
Yang Yang(Tony) 已提交
170
    auto *program = block->Program();
S
sneaxiy 已提交
171 172

    auto &skip_vars = Attr<std::vector<std::string>>(kSkipEagerDeletionVars);
S
sneaxiy 已提交
173
    VLOG(2) << GetSkipEagerDeletionVarsDebugString(skip_vars);
S
sneaxiy 已提交
174
    auto ctx = executor.Prepare(*program, block->ID(), skip_vars);
Y
Yang Yang(Tony) 已提交
175 176 177 178

    auto *step_scopes =
        scope.FindVar(Input(kStepScopes))->GetMutable<StepScopeVar>();

Y
Yang Yang(Tony) 已提交
179 180 181 182 183 184
    auto outside_og_names = Inputs(framework::GradVarName(kOutputs));
    auto inside_og_names =
        Attr<std::vector<std::string>>("original_output_grad");

    PADDLE_ENFORCE_EQ(outside_og_names.size(), inside_og_names.size());

Y
Yang Yang(Tony) 已提交
185 186
    for (auto cur_scope_iter = step_scopes->rbegin();
         cur_scope_iter != step_scopes->rend(); ++cur_scope_iter) {
M
minqiyang 已提交
187 188
      VLOG(3) << "Start backward at time_step "
              << cur_scope_iter - step_scopes->rbegin();
Y
Yang Yang(Tony) 已提交
189 190 191 192 193
      framework::Scope &cur_scope = **cur_scope_iter;
      // Link OG from outside to inside
      for (size_t i = 0; i < outside_og_names.size(); ++i) {
        auto outside_og_name = outside_og_names[i];
        auto inside_og_name = inside_og_names[i];
M
minqiyang 已提交
194 195
        VLOG(8) << "Linking outside " << outside_og_name << " --> inside "
                << inside_og_name;
C
chengduo 已提交
196 197 198 199
        if (scope.FindVar(outside_og_name) == nullptr) {
          continue;
        }

200 201
        auto &og_outside = *scope.FindVar(outside_og_name);
        auto &og_inside = *cur_scope.Var(inside_og_name);
S
sneaxiy 已提交
202
        if (og_outside.IsType<framework::LoDTensor>()) {
Y
Yang Yang(Tony) 已提交
203
          auto &outside_tensor = og_outside.Get<framework::LoDTensor>();
204
          auto &inside_tensor = *og_inside.GetMutable<framework::LoDTensor>();
Y
Yang Yang(Tony) 已提交
205 206
          inside_tensor.set_lod(outside_tensor.lod());
          inside_tensor.ShareDataWith(outside_tensor);
S
sneaxiy 已提交
207
        } else if (og_outside.IsType<framework::LoDTensorArray>()) {
208 209
          auto outside_array =
              og_outside.GetMutable<framework::LoDTensorArray>();
Y
Yang Yang(Tony) 已提交
210
          auto &inside_array =
211
              *og_inside.GetMutable<framework::LoDTensorArray>();
212 213 214
          inside_array.clear();
          inside_array.resize(outside_array->size());
          VLOG(8) << outside_og_name << " size = " << outside_array->size();
Y
Yang Yang(Tony) 已提交
215 216

          for (size_t j = 0; j < inside_array.size(); ++j) {
217 218 219 220 221 222 223
            if (!outside_array->at(j).IsInitialized()) {
              outside_array->at(j).Resize({0});
            }
            VLOG(8) << j << " " << outside_array->at(j).numel();
            if (outside_array->at(j).numel() != 0) {
              inside_array[j].set_lod(outside_array->at(j).lod());
              inside_array[j].ShareDataWith(outside_array->at(j));
Y
Yang Yang(Tony) 已提交
224 225 226 227
            } else {
              PADDLE_ENFORCE_EQ(inside_array[j].numel(), 0);
            }
          }
C
chengduo 已提交
228 229
        } else {
          PADDLE_THROW("Currently only support LoDTensor and LoDTensorArray.");
Y
Yang Yang(Tony) 已提交
230 231
        }
      }
C
chengduoZH 已提交
232 233
      executor.RunPreparedContext(ctx.get(), *cur_scope_iter, false, true,
                                  true);
Y
Yang Yang(Tony) 已提交
234

C
chengduo 已提交
235 236 237
      // The Outputs(kXGRAD) contains the names of the gradient of parameters
      // and inputs.
      auto &pg_ig_names = Outputs(kXGRAD);
Y
Yang Yu 已提交
238
      auto &p_names = Inputs(kX);
C
chengduo 已提交
239 240 241
      PADDLE_ENFORCE_EQ(pg_ig_names.size(), p_names.size());
      for (size_t param_id = 0; param_id < pg_ig_names.size(); ++param_id) {
        if (pg_ig_names[param_id] == framework::kEmptyVarName) {
242
          continue;  // parameter doesn't have gradient
Y
Yang Yang(Tony) 已提交
243 244
        }
        auto inside_grad_name = framework::GradVarName(p_names[param_id]);
Y
Yang Yang(Tony) 已提交
245

C
chengduo 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
        // for some grad_op, their input doesn't have gradient,
        // for example lookup_table_grad_op, the input(Idx) doesn't have
        // gradient.
        auto pg_ig_var = cur_scope.FindVar(inside_grad_name);
        PADDLE_ENFORCE(pg_ig_var != nullptr);
        if (pg_ig_var->IsType<framework::LoDTensorArray>()) {
          auto pg_ig_lod_t_arr =
              pg_ig_var->GetMutable<framework::LoDTensorArray>();
          bool empty = true;
          for (auto &each : *pg_ig_lod_t_arr) {
            if (each.numel() != 0) {
              empty = false;
              break;
            }
          }
          if (empty) {
            LOG(WARNING) << pg_ig_names[param_id]
                         << " is not found in cur_scope.";
            continue;
          }
        }

Y
Yang Yang(Tony) 已提交
268
        //  // TODO(tonyyang-svail): Not sure we need the following
Y
Yang Yang(Tony) 已提交
269 270 271 272 273 274 275 276 277 278 279
        //  // If does not compute gradient of that variable inside rnn,
        //  just
        //  // continue
        //  if (local_var_names.find(inside_grad_name) ==
        //  local_var_names.end()) {
        //    continue;
        //  }

        // zero gradient variable in step 0
        if (cur_scope_iter == step_scopes->rbegin()) {
          auto *var = (*cur_scope_iter)->FindVar(inside_grad_name);
Y
Yang Yang(Tony) 已提交
280
          PADDLE_ENFORCE_NOT_NULL(var, "Can not find var %s", inside_grad_name);
C
chengduoZH 已提交
281 282 283 284 285
          PADDLE_ENFORCE(
              var->IsType<framework::LoDTensorArray>() ||
                  var->IsType<LoDTensor>(),
              "Currently the type of var only can be LoDTensorArray, "
              "or LoDTensor, but the received var[%s] is %s.",
S
sneaxiy 已提交
286
              inside_grad_name, framework::ToTypeName(var->Type()));
C
chengduo 已提交
287

Y
Yang Yang(Tony) 已提交
288 289 290
          if (var->IsType<LoDTensor>()) {
            auto &inside_tensor = var->Get<framework::LoDTensor>();
            framework::AttributeMap attrs;
Y
Yu Yang 已提交
291
            attrs["dtype"] = inside_tensor.type();
292
            attrs["shape"] = framework::vectorize<int>(inside_tensor.dims());
Y
Yang Yang(Tony) 已提交
293 294
            attrs["value"] = 0.0f;

C
chengduo 已提交
295
            auto var_name = pg_ig_names[param_id];
Y
Yang Yang(Tony) 已提交
296
            auto zero_op = framework::OpRegistry::CreateOp(
Y
Yiqun Liu 已提交
297
                "fill_constant", framework::VariableNameMap{},
298
                {{"Out", {var_name}}}, attrs);
D
dzhwinter 已提交
299
            zero_op->Run(scope, dev_place);
300 301 302
            scope.FindVar(var_name)
                ->GetMutable<framework::LoDTensor>()
                ->set_lod(inside_tensor.lod());
Y
Yang Yang(Tony) 已提交
303 304
          }
        }
Y
Yang Yang(Tony) 已提交
305
        auto new_inside_name = cur_scope.Rename(inside_grad_name);
Y
Yang Yang(Tony) 已提交
306
        auto sum_op = framework::OpRegistry::CreateOp(
C
chengduo 已提交
307 308
            "sum", {{"X", {pg_ig_names[param_id], new_inside_name}}},
            {{"Out", {pg_ig_names[param_id]}}},
309
            framework::AttributeMap{{"use_mkldnn", {false}}});
D
dzhwinter 已提交
310
        sum_op->Run(cur_scope, dev_place);
Y
Yang Yang(Tony) 已提交
311
        cur_scope.Rename(new_inside_name, inside_grad_name);
Y
Yang Yang(Tony) 已提交
312
      }
313 314
      dev_ctx.Wait();
      const_cast<framework::Scope &>(scope).DeleteScope(&cur_scope);
Y
Yang Yang(Tony) 已提交
315
    }
316
    step_scopes->clear();
Y
Yang Yang(Tony) 已提交
317 318 319
  }
};

H
hong 已提交
320 321
template <typename T>
class WhileGradOpMaker : public framework::SingleGradOpMaker<T> {
Y
Yang Yang(Tony) 已提交
322
 public:
H
hong 已提交
323
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Y
Yang Yang(Tony) 已提交
324 325

 protected:
326
  void Apply(GradOpPtr<T> while_grad) const override {
F
Update  
fengjiayi 已提交
327
    while_grad->SetType("while_grad");
H
hong 已提交
328 329 330
    while_grad->SetInput(kX, this->Input(kX));
    while_grad->SetInput(kOutputs, this->Output(kOutputs));
    while_grad->SetInput(kStepScopes, this->Output(kStepScopes));
F
Update  
fengjiayi 已提交
331 332

    auto *grad_block = this->grad_block_[0];
Y
Yu Yang 已提交
333 334
    auto *fwd_block = grad_block->ForwardBlock();
    auto *parent_block = grad_block->ParentBlock();
335 336 337

    // Not all of IGs will be generated by inner gradient operators of while op.
    // Ignore IGs that is not generated by the inside block.
F
Update  
fengjiayi 已提交
338 339 340 341
    std::unordered_set<std::string> inner_op_outputs;
    for (const auto *op : grad_block->AllOps()) {
      for (auto &oname : op->OutputArgumentNames()) {
        inner_op_outputs.insert(oname);
342 343
      }
    }
H
hong 已提交
344 345
    auto igs = this->InputGrad(kX, /*do not drop empty gradient*/ false);

346
    for (auto &each_ig : igs) {
F
Update  
fengjiayi 已提交
347
      if (inner_op_outputs.find(each_ig) == inner_op_outputs.end()) {
M
minqiyang 已提交
348
        VLOG(8) << "Ignore " << each_ig;
349 350 351
        each_ig = framework::kEmptyVarName;
      }
    }
F
Update  
fengjiayi 已提交
352
    while_grad->SetOutput(framework::GradVarName(kX), igs);
Y
Yang Yang(Tony) 已提交
353 354 355 356

    // OG should be re-calculated by step blocks, since many outputs of while op
    // do not need to calculate gradients.
    std::unordered_set<std::string> block_ins;
H
hong 已提交
357 358
    block_ins.reserve(this->Input(kX).size() + this->Output(kOutputs).size());
    for (auto &p : this->Input(kX)) {
F
fengjiayi 已提交
359 360
      block_ins.insert(p);
    }
H
hong 已提交
361
    for (auto &o : this->Output(kOutputs)) {
F
fengjiayi 已提交
362 363
      block_ins.insert(o);
    }
Y
Yu Yang 已提交
364
    std::unordered_set<std::string> output_grads;
F
Update  
fengjiayi 已提交
365 366 367 368
    for (const auto *op : grad_block->AllOps()) {
      for (auto &input_name : op->InputArgumentNames()) {
        // If the input of Op has been recorded or is generated by the forward
        // block, do not make it as input again.
Y
Yu Yang 已提交
369 370 371

        // The input is located in I/O or other op's outputs or the variable is
        // located in grad_block's parents
F
Update  
fengjiayi 已提交
372
        if (block_ins.find(input_name) != block_ins.end() ||
Y
Yu Yang 已提交
373 374
            (fwd_block->FindVarRecursive(input_name) != nullptr ||
             parent_block->FindVarRecursive(input_name) != nullptr)) {
Y
Yang Yang(Tony) 已提交
375 376
          continue;
        }
C
chengduo 已提交
377

Y
Yu Yang 已提交
378
        output_grads.insert(input_name);
Y
Yang Yang(Tony) 已提交
379
      }
F
Update  
fengjiayi 已提交
380
      for (auto &output_name : op->OutputArgumentNames()) {
Y
Yang Yang(Tony) 已提交
381
        block_ins.insert(output_name);
Y
Yang Yang(Tony) 已提交
382 383
      }
    }
Y
Yang Yang(Tony) 已提交
384

Y
Yu Yang 已提交
385 386 387 388 389
    std::vector<std::string> output_grads_list;
    output_grads_list.resize(output_grads.size());
    std::copy(output_grads.begin(), output_grads.end(),
              output_grads_list.begin());
    while_grad->SetInput(framework::GradVarName(kOutputs), output_grads_list);
F
Update  
fengjiayi 已提交
390 391

    while_grad->SetAttrMap(this->Attrs());
A
Abhinav Arora 已提交
392
    while_grad->SetBlockAttr(kStepBlock, grad_block);
Y
Yang Yang(Tony) 已提交
393 394
    // record the original output gradient names, since the gradient name of
    // while operator could be renamed.
Y
Yu Yang 已提交
395
    while_grad->SetAttr("original_output_grad", output_grads_list);
Y
Yang Yang(Tony) 已提交
396

S
sneaxiy 已提交
397
    while_grad->SetAttr(kSkipEagerDeletionVars, std::vector<std::string>());
Y
Yang Yang(Tony) 已提交
398 399 400
  }
};

401 402
class WhileGradOpVarTypeInference
    : public framework::StaticGraphVarTypeInference {
Y
Yang Yang(Tony) 已提交
403
 public:
M
minqiyang 已提交
404
  void operator()(framework::InferVarTypeContext *ctx) const override {
405 406
    auto p_names = Input(ctx, kX);
    auto pg_ig_names = Output(ctx, framework::GradVarName(kX));
Y
Yang Yang(Tony) 已提交
407 408

    for (size_t i = 0; i < p_names.size(); ++i) {
409
      if (HasVar(ctx, pg_ig_names[i])) {
M
minqiyang 已提交
410
        VLOG(5) << "Setting " << pg_ig_names[i] << " following " << p_names[i]
411 412 413
                << " type: " << GetType(ctx, p_names[i]);
        SetType(ctx, pg_ig_names[i], GetType(ctx, p_names[i]));
        SetDataType(ctx, pg_ig_names[i], GetDataType(ctx, p_names[i]));
Y
Yang Yang(Tony) 已提交
414 415 416 417 418 419 420 421
      }
    }
  }
};

class WhileGradOpShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *ctx) const override {
Y
Yang Yu 已提交
422 423
    ctx->HasInputs(kX);
    ctx->HasOutputs(framework::GradVarName(kX));
Y
Yang Yang(Tony) 已提交
424 425 426
    ctx->HasInputs(kOutputs);
    ctx->HasInputs(framework::GradVarName(kOutputs));

C
chengduo 已提交
427
    auto pg_ig_names = ctx->Outputs(kXGRAD);
X
Xin Pan 已提交
428 429 430 431 432 433 434
    std::vector<framework::InferShapeVarPtr> in_var_ptrs =
        ctx->GetInputVarPtrs(kX);
    std::vector<framework::InferShapeVarPtr> out_var_ptrs =
        ctx->GetOutputVarPtrs(kXGRAD);
    PADDLE_ENFORCE(in_var_ptrs.size() == out_var_ptrs.size());

    for (size_t i = 0; i < in_var_ptrs.size(); ++i) {
C
chengduo 已提交
435
      if (pg_ig_names[i] == framework::kEmptyVarName) {
Y
Yang Yang(Tony) 已提交
436 437
        continue;
      }
X
Xin Pan 已提交
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
      if (ctx->IsRuntime()) {
        framework::Variable *in_var =
            boost::get<framework::Variable *>(in_var_ptrs[i]);
        framework::Variable *out_var =
            boost::get<framework::Variable *>(out_var_ptrs[i]);

        auto type = framework::ToVarType(in_var->Type());
        if (type == framework::proto::VarType::LOD_TENSOR) {
          out_var->GetMutable<LoDTensor>()->Resize(
              in_var->Get<framework::LoDTensor>().dims());
        } else if (type == framework::proto::VarType::SELECTED_ROWS) {
          out_var->GetMutable<framework::SelectedRows>()->set_height(
              in_var->Get<framework::SelectedRows>().GetCompleteDims()[0]);
        } else if (type == framework::proto::VarType::LOD_TENSOR_ARRAY) {
          PADDLE_THROW("WhileGradOp doesn't support type %d",
                       static_cast<int>(type));
        }
      } else {
        framework::VarDesc *in_var =
            boost::get<framework::VarDesc *>(in_var_ptrs[i]);
        boost::get<framework::VarDesc *>(out_var_ptrs[i])
            ->SetShape(in_var->GetShape());
Y
Yang Yang(Tony) 已提交
460 461 462 463 464
      }
    }
  }
};

Y
Yang Yang(Tony) 已提交
465 466 467
}  // namespace operators
}  // namespace paddle

H
hong 已提交
468 469 470
REGISTER_OPERATOR(
    while, paddle::operators::WhileOp, paddle::operators::WhileOpMaker,
    paddle::operators::WhileGradOpMaker<paddle::framework::OpDesc>);
Y
Yang Yang(Tony) 已提交
471 472 473
REGISTER_OPERATOR(while_grad, paddle::operators::WhileGradOp,
                  paddle::operators::WhileGradOpShapeInference,
                  paddle::operators::WhileGradOpVarTypeInference);