graph_test.cc 8.1 KB
Newer Older
X
Xin Pan 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
X
Xin Pan 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/ir/graph.h"
#include "gtest/gtest.h"
17
#include "paddle/fluid/framework/details/multi_devices_helper.h"
X
Xin Pan 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"

namespace paddle {
namespace framework {

class NOP : public OperatorBase {
 public:
  NOP(const std::string &type, const VariableNameMap &inputs,
      const VariableNameMap &outputs, const AttributeMap &attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}

 private:
  void RunImpl(const Scope &scope,
               const platform::Place &place) const override {}
};

class SumOpMaker : public OpProtoAndCheckerMaker {
 public:
  void Make() {
    AddInput("X", "").AsDuplicable();
X
Xin Pan 已提交
40
    AddOutput("Out", "").AsDuplicable();
X
Xin Pan 已提交
41 42 43 44 45 46
    AddComment("");
  }
};

class SumOpVarTypeInference : public VarTypeInference {
 public:
M
minqiyang 已提交
47
  void operator()(InferVarTypeContext *ctx) const override {
X
Xin Pan 已提交
48 49
    auto default_var_type = proto::VarType::SELECTED_ROWS;

50
    if (ctx->InputTypeAnyOf("X", proto::VarType::LOD_TENSOR)) {
X
Xin Pan 已提交
51 52 53
      default_var_type = proto::VarType::LOD_TENSOR;
    }

54
    ctx->SetOutputType("Out", default_var_type);
X
Xin Pan 已提交
55 56
  }
};
X
Xin Pan 已提交
57 58 59 60 61 62 63 64 65 66 67 68

class DummyOpMaker : public OpProtoAndCheckerMaker {
 public:
  void Make() {
    AddInput("X", "").AsDuplicable();
    AddOutput("Out", "").AsDuplicable();
    AddComment("");
  }
};

class DummyOpVarTypeInference : public VarTypeInference {
 public:
M
minqiyang 已提交
69
  void operator()(framework::InferVarTypeContext *ctx) const override {}
X
Xin Pan 已提交
70
};
X
Xin Pan 已提交
71 72 73 74 75
}  // namespace framework
}  // namespace paddle

REGISTER_OPERATOR(sum, paddle::framework::NOP, paddle::framework::SumOpMaker,
                  paddle::framework::SumOpVarTypeInference);
X
Xin Pan 已提交
76 77
REGISTER_OPERATOR(dummy, paddle::framework::NOP, paddle::framework::SumOpMaker,
                  paddle::framework::SumOpVarTypeInference);
X
Xin Pan 已提交
78 79 80 81 82 83 84 85 86 87 88 89
REGISTER_OPERATOR(sum_without_infer_var_type, paddle::framework::NOP,
                  paddle::framework::SumOpMaker);

namespace paddle {
namespace framework {

TEST(GraphTest, Basic) {
  ProgramDesc prog;
  auto *op = prog.MutableBlock(0)->AppendOp();
  op->SetType("sum");
  op->SetInput("X", {"test_a", "test_b", "test_c"});
  op->SetOutput("Out", {"test_out"});
X
Xin Pan 已提交
90
  op->SetAttr("op_role", 1);
X
Xin Pan 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

  prog.MutableBlock(0)->Var("test_a")->SetType(proto::VarType::SELECTED_ROWS);
  prog.MutableBlock(0)->Var("test_b")->SetType(proto::VarType::SELECTED_ROWS);
  prog.MutableBlock(0)->Var("test_c")->SetType(proto::VarType::SELECTED_ROWS);
  prog.MutableBlock(0)->Var("test_out");

  op->InferVarType(prog.MutableBlock(0));

  ASSERT_EQ(proto::VarType::SELECTED_ROWS,
            prog.MutableBlock(0)->Var("test_out")->GetType());

  prog.MutableBlock(0)->Var("test_b")->SetType(proto::VarType::LOD_TENSOR);
  op->InferVarType(prog.MutableBlock(0));
  ASSERT_EQ(proto::VarType::LOD_TENSOR,
            prog.MutableBlock(0)->Var("test_out")->GetType());

X
Xin Pan 已提交
107
  std::unique_ptr<ir::Graph> g(new ir::Graph(prog));
X
Xin Pan 已提交
108
  std::vector<ir::Node *> nodes(g->Nodes().begin(), g->Nodes().end());
X
Xin Pan 已提交
109 110
  for (ir::Node *n : nodes) {
    if (n->Name() == "sum") {
N
nhzlx 已提交
111 112
      ASSERT_EQ(n->inputs.size(), 3UL);
      ASSERT_EQ(n->outputs.size(), 1UL);
X
Xin Pan 已提交
113 114
    } else if (n->Name() == "test_a" || n->Name() == "test_b" ||
               n->Name() == "test_c") {
N
nhzlx 已提交
115 116
      ASSERT_EQ(n->inputs.size(), 0UL);
      ASSERT_EQ(n->outputs.size(), 1UL);
X
Xin Pan 已提交
117
    } else if (n->Name() == "test_out") {
N
nhzlx 已提交
118 119
      ASSERT_EQ(n->inputs.size(), 1UL);
      ASSERT_EQ(n->outputs.size(), 0UL);
X
Xin Pan 已提交
120 121
    }
  }
122
  ASSERT_EQ(nodes.size(), 5UL);
X
Xin Pan 已提交
123
}
X
Xin Pan 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

TEST(GraphTest, WriteAfterRead) {
  // void Test() {
  ProgramDesc prog;
  auto *op = prog.MutableBlock(0)->AppendOp();
  op->SetType("sum");
  op->SetInput("X", {"a"});
  op->SetOutput("Out", {"b"});
  op->SetAttr("op_role", 1);

  op = prog.MutableBlock(0)->AppendOp();
  op->SetType("dummy");
  op->SetInput("X", {"c"});
  op->SetOutput("Out", {"a"});
  op->SetAttr("op_role", 1);

  prog.MutableBlock(0)->Var("a")->SetType(proto::VarType::LOD_TENSOR);
  prog.MutableBlock(0)->Var("b")->SetType(proto::VarType::LOD_TENSOR);
  prog.MutableBlock(0)->Var("c")->SetType(proto::VarType::LOD_TENSOR);

  std::unique_ptr<ir::Graph> g(new ir::Graph(prog));
  ir::Node *control_dep1 = nullptr;
  ir::Node *control_dep2 = nullptr;
  for (ir::Node *n : g->Nodes()) {
    if (n->Name() == "sum") {
      ASSERT_EQ(n->outputs[0]->Name(), "b");
      ASSERT_TRUE(ir::IsControlDepVar(*n->outputs[1]));
      control_dep1 = n->outputs[1];
152
      ASSERT_EQ(n->outputs.size(), 2UL);
X
Xin Pan 已提交
153 154 155 156 157
    }
    if (n->Name() == "dummy") {
      ASSERT_EQ(n->inputs[0]->Name(), "c");
      ASSERT_TRUE(ir::IsControlDepVar(*n->inputs[1]));
      control_dep2 = n->inputs[1];
158
      ASSERT_EQ(n->inputs.size(), 2UL);
X
Xin Pan 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
    }
  }
  ASSERT_EQ(control_dep1, control_dep2);
}

TEST(GraphTest, WriteAfterWrite) {
  // void Test() {
  ProgramDesc prog;
  auto *op = prog.MutableBlock(0)->AppendOp();
  op->SetType("sum");
  op->SetInput("X", {"a"});
  op->SetOutput("Out", {"b"});
  op->SetAttr("op_role", 1);

  op = prog.MutableBlock(0)->AppendOp();
  op->SetType("dummy");
  op->SetInput("X", {"c"});
  op->SetOutput("Out", {"b"});
  op->SetAttr("op_role", 1);

  prog.MutableBlock(0)->Var("a")->SetType(proto::VarType::LOD_TENSOR);
  prog.MutableBlock(0)->Var("b")->SetType(proto::VarType::LOD_TENSOR);
  prog.MutableBlock(0)->Var("c")->SetType(proto::VarType::LOD_TENSOR);

  std::unique_ptr<ir::Graph> g(new ir::Graph(prog));
  ir::Node *control_dep1 = nullptr;
  ir::Node *control_dep2 = nullptr;
  for (ir::Node *n : g->Nodes()) {
    if (n->Name() == "sum") {
      ASSERT_EQ(n->outputs[0]->Name(), "b");
      ASSERT_TRUE(ir::IsControlDepVar(*n->outputs[1]));
190
      ASSERT_EQ(n->outputs.size(), 2UL);
X
Xin Pan 已提交
191 192 193 194 195 196
      control_dep1 = n->outputs[1];
    }
    if (n->Name() == "dummy") {
      ASSERT_EQ(n->inputs[0]->Name(), "c");
      ASSERT_TRUE(ir::IsControlDepVar(*n->inputs[1]));
      control_dep2 = n->inputs[1];
197
      ASSERT_EQ(n->inputs.size(), 2UL);
X
Xin Pan 已提交
198 199
    }
  }
M
minqiyang 已提交
200 201 202
  ASSERT_NE(control_dep1, nullptr);
  ASSERT_NE(control_dep2, nullptr);
  ASSERT_EQ(control_dep1, control_dep2);
X
Xin Pan 已提交
203
}
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249

TEST(GraphTest, TestException) {
  ProgramDesc prog;
  std::unique_ptr<ir::Graph> g(new ir::Graph(prog));

  bool not_met_exception = false;
  try {
    g->Erase("no_attr");
  } catch (const platform::EnforceNotMet &e) {
    not_met_exception = true;
  }
  ASSERT_TRUE(not_met_exception);

  not_met_exception = false;
  try {
    g->CreateVarNode(nullptr);
  } catch (const platform::EnforceNotMet &e) {
    not_met_exception = true;
  }
  ASSERT_TRUE(not_met_exception);

  not_met_exception = false;
  try {
    g->CreateOpNode(nullptr);
  } catch (const platform::EnforceNotMet &e) {
    not_met_exception = true;
  }
  ASSERT_TRUE(not_met_exception);

  not_met_exception = false;
  try {
    g->RemoveNode(nullptr);
  } catch (const platform::EnforceNotMet &e) {
    not_met_exception = true;
  }
  ASSERT_TRUE(not_met_exception);

  not_met_exception = false;
  try {
    g->AddNode(nullptr);
    g->AddNode(nullptr);
  } catch (const platform::EnforceNotMet &e) {
    not_met_exception = true;
  }
  ASSERT_TRUE(not_met_exception);
}
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266

TEST(GraphTest, TestAttrCopy) {
  ProgramDesc prog;
  ir::Graph src_g(prog);
  ir::Graph dst_g(prog);
  const std::string kIntValue = "int_value";
  const std::string kFloatValue = "float_value";
  const int INT_VALUE = 3;
  src_g.Set<int>(kIntValue, new int(INT_VALUE));
  details::CopyGraphAttrIfExists<int>(src_g, &dst_g, kIntValue);
  details::CopyGraphAttrIfExists<float>(src_g, &dst_g, kFloatValue);

  ASSERT_TRUE(dst_g.Has(kIntValue));
  ASSERT_EQ(dst_g.Get<int>(kIntValue), INT_VALUE);
  ASSERT_FALSE(dst_g.Has(kFloatValue));
}

X
Xin Pan 已提交
267 268
}  // namespace framework
}  // namespace paddle