test_atan2_op.py 3.9 KB
Newer Older
R
ronnywang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import unittest

from op_test import OpTest
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid import compiler, Program, program_guard

paddle.enable_static()
np.random.seed(0)


def atan2_grad(x1, x2, dout):
    dx1 = dout * x2 / (x1 * x1 + x2 * x2)
    dx2 = -dout * x1 / (x1 * x1 + x2 * x2)
    return dx1, dx2


class TestAtan2(OpTest):
    def setUp(self):
        self.op_type = "atan2"
        self.init_dtype()

        x1 = np.random.uniform(-1, -0.1, [15, 17]).astype(self.dtype)
        x2 = np.random.uniform(0.1, 1, [15, 17]).astype(self.dtype)
        out = np.arctan2(x1, x2)

        self.inputs = {'X1': x1, 'X2': x2}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        self.check_grad(['X1', 'X2'], 'Out')

    def test_check_output(self):
        self.check_output()

    def init_dtype(self):
        self.dtype = np.float64


class TestAtan2_float(TestAtan2):
    def init_dtype(self):
        self.dtype = np.float32

    def test_check_grad(self):
        if self.dtype not in [np.int32, np.int64]:
            self.check_grad(
                ['X1', 'X2'],
                'Out',
                user_defined_grads=atan2_grad(self.inputs['X1'],
                                              self.inputs['X2'],
                                              1 / self.inputs['X1'].size))


class TestAtan2_float16(TestAtan2_float):
    def init_dtype(self):
        self.dtype = np.float16


class TestAtan2_int32(TestAtan2_float):
    def init_dtype(self):
        self.dtype = np.int32


class TestAtan2_int64(TestAtan2_float):
    def init_dtype(self):
        self.dtype = np.int64


class TestAtan2API(unittest.TestCase):
    def init_dtype(self):
        self.dtype = 'float64'
        self.shape = [11, 17]

    def setUp(self):
        self.init_dtype()
        self.x1 = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)
        self.x2 = np.random.uniform(-1, -0.1, self.shape).astype(self.dtype)
        self.place = [paddle.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.place.append(paddle.CUDAPlace(0))

    def test_static_api(self):
        paddle.enable_static()

        def run(place):
            with paddle.static.program_guard(paddle.static.Program()):
                X1 = paddle.fluid.data('X1', self.shape, dtype=self.dtype)
                X2 = paddle.fluid.data('X2', self.shape, dtype=self.dtype)
                out = paddle.atan2(X1, X2)
                exe = paddle.static.Executor(place)
                res = exe.run(feed={'X1': self.x1, 'X2': self.x2})
            out_ref = np.arctan2(self.x1, self.x2)
            for r in res:
                self.assertEqual(np.allclose(out_ref, r), True)

        for place in self.place:
            run(place)

    def test_dygraph_api(self):
        def run(place):
            paddle.disable_static(place)
            X1 = paddle.to_tensor(self.x1)
            X2 = paddle.to_tensor(self.x2)
            out = paddle.atan2(X1, X2)
            out_ref = np.arctan2(self.x1, self.x2)
            self.assertEqual(np.allclose(out_ref, out.numpy()), True)
            paddle.enable_static()

        for place in self.place:
            run(place)


if __name__ == '__main__':
    unittest.main()