elementwise_mul_op.cu 8.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/elementwise/elementwise_mul_op.h"
16
#include "paddle/fluid/operators/elementwise/elementwise_op_broadcast.cu.h"
17
#include "paddle/fluid/platform/complex.h"
W
Wu Yi 已提交
18
#include "paddle/fluid/platform/float16.h"
19

Y
YuanRisheng 已提交
20 21 22 23
// only can include the headers in paddle/top/api dirs
#include "paddle/pten/api/lib/utils/tensor_utils.h"
#include "paddle/pten/include/core.h"
#include "paddle/pten/include/math.h"
24
namespace ops = paddle::operators;
W
Wu Yi 已提交
25
namespace plat = paddle::platform;
26

27 28 29
namespace paddle {
namespace operators {

30 31 32 33 34
template <typename T>
class ElementwiseMulKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
Y
YuanRisheng 已提交
35 36 37 38 39
    auto x_var = ctx.InputVar("X");
    PADDLE_ENFORCE_EQ(x_var != nullptr, true,
                      platform::errors::InvalidArgument(
                          "Cannot get input Variable X, Variable name = %s.",
                          ctx.InputName("X")));
40 41
    const auto& cuda_ctx =
        ctx.template device_context<platform::CUDADeviceContext>();
Y
YuanRisheng 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54
    if (x_var->IsType<framework::SelectedRows>()) {
      framework::Tensor x_for_selectedrows;
      std::vector<const framework::Tensor*> ins;
      std::vector<framework::Tensor*> outs;
      int axis =
          PackTensorsIntoVector<T>(ctx, &ins, &outs, &x_for_selectedrows);
      LaunchElementwiseCudaKernel<ElementwiseType::kBinary, T, T>(
          cuda_ctx, ins, &outs, axis, MulFunctor<T>());
    } else if (x_var->IsType<framework::LoDTensor>()) {
      auto* x_lod = ctx.Input<framework::LoDTensor>("X");
      auto* y_lod = ctx.Input<framework::LoDTensor>("Y");
      auto* z_lod = ctx.Output<framework::LoDTensor>("Out");
      z_lod->mutable_data<T>(ctx.GetPlace());
55

Y
YuanRisheng 已提交
56 57 58 59
      int axis = ctx.Attr<int>("axis");
      auto pt_x = paddle::experimental::MakePtenDenseTensor(*x_lod);
      auto pt_y = paddle::experimental::MakePtenDenseTensor(*y_lod);
      auto pt_z = paddle::experimental::MakePtenDenseTensor(*z_lod);
60 61
      pten::MultiplyKernel<T>(cuda_ctx, *pt_x.get(), *pt_y.get(), axis,
                              pt_z.get());
Y
YuanRisheng 已提交
62 63 64 65 66 67
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "X's type[%s] is not supported by elementwise_op. X's type should be "
          "LoDTensor or SelectedRows.",
          framework::ToTypeName(x_var->Type())));
    }
68 69 70
  }
};

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
template <typename T>
static __global__ void SimpleElemwiseMulGradCUDAKernel(const T* x, const T* y,
                                                       const T* out,
                                                       const T* dout,
                                                       int64_t size, T* dx,
                                                       T* dy) {
  int col = blockIdx.x * blockDim.x + threadIdx.x;

  while (col < size) {
    T o = dout[col];
    dx[col] = y[col] * o;
    dy[col] = x[col] * o;
    col += blockDim.x * gridDim.x;
  }
}

87
template <>
88 89 90 91
__global__ void SimpleElemwiseMulGradCUDAKernel<plat::complex<float>>(
    const plat::complex<float>* x, const plat::complex<float>* y,
    const plat::complex<float>* out, const plat::complex<float>* dout,
    int64_t size, plat::complex<float>* dx, plat::complex<float>* dy) {
92 93 94
  int col = blockIdx.x * blockDim.x + threadIdx.x;

  while (col < size) {
95 96 97
    plat::complex<float> o = dout[col];
    dx[col] = plat::complex<float>(y[col].real, -y[col].imag) * o;
    dy[col] = plat::complex<float>(x[col].real, -x[col].imag) * o;
98 99 100 101 102
    col += blockDim.x * gridDim.x;
  }
}

template <>
103 104 105 106
__global__ void SimpleElemwiseMulGradCUDAKernel<plat::complex<double>>(
    const plat::complex<double>* x, const plat::complex<double>* y,
    const plat::complex<double>* out, const plat::complex<double>* dout,
    int64_t size, plat::complex<double>* dx, plat::complex<double>* dy) {
107 108 109
  int col = blockIdx.x * blockDim.x + threadIdx.x;

  while (col < size) {
110 111 112
    plat::complex<double> o = dout[col];
    dx[col] = plat::complex<double>(y[col].real, -y[col].imag) * o;
    dy[col] = plat::complex<double>(x[col].real, -x[col].imag) * o;
113 114 115 116
    col += blockDim.x * gridDim.x;
  }
}

117 118 119 120 121 122 123 124
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, plat::CUDADeviceContext>::value>::type
elementwise_mul_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy) {
125
  dim3 block_size = dim3(ELEMENTWISE_BLOCK_SIZE, 1);
126
  auto size = x->numel();
127
  dim3 grid_size =
128
      dim3((size + ELEMENTWISE_BLOCK_SIZE - 1) / ELEMENTWISE_BLOCK_SIZE, 1);
129
  SimpleElemwiseMulGradCUDAKernel<
130
      T><<<grid_size, block_size, 0,
131 132 133 134
           ctx.template device_context<plat::CUDADeviceContext>().stream()>>>(
      x->data<T>(), y->data<T>(), out->data<T>(), dout->data<T>(), size,
      dx->mutable_data<T>(ctx.GetPlace()), dy->mutable_data<T>(ctx.GetPlace()));
}
135 136 137 138

}  // namespace operators
}  // namespace paddle

Q
QI JUN 已提交
139
REGISTER_OP_CUDA_KERNEL(
W
Wu Yi 已提交
140 141 142 143
    elementwise_mul, ops::ElementwiseMulKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, int>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, int64_t>,
W
will-jl944 已提交
144
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, bool>,
145
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, plat::float16>,
146 147
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, plat::complex<float>>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, plat::complex<double>>);
Q
QI JUN 已提交
148
REGISTER_OP_CUDA_KERNEL(
149
    elementwise_mul_grad,
W
Wu Yi 已提交
150 151 152 153
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, int>,
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, int64_t>,
W
will-jl944 已提交
154
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, bool>,
155
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, plat::float16>,
156 157 158 159
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext,
                                  plat::complex<float>>,
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext,
                                  plat::complex<double>>);
160 161 162 163 164
REGISTER_OP_CUDA_KERNEL(
    elementwise_mul_grad_grad,
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, int>,
165
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, int64_t>,
W
will-jl944 已提交
166
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, bool>,
167
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, plat::float16>,
168
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext,
169
                                        plat::complex<float>>,
170
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext,
171
                                        plat::complex<double>>);
172 173 174 175 176 177 178 179 180 181 182 183
REGISTER_OP_CUDA_KERNEL(
    elementwise_mul_triple_grad,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, int>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, int64_t>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, bool>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, plat::float16>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext,
                                        plat::complex<float>>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext,
                                        plat::complex<double>>);