affine_grid_cudnn_op.cu.cc 5.1 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/cudnn_helper.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using ScopedSpatialTransformerDescriptor =
    platform::ScopedSpatialTransformerDescriptor;

template <typename T>
class CUDNNAffineGridOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
29 30 31 32 33 34
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        platform::errors::InvalidArgument("Only "
                                          "support for CUDAPlace.Please switch "
                                          "your context from CPUPlace to "
                                          "CUDAPlace or update your cudnn."));
W
whs 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();
    auto* theta = ctx.Input<Tensor>("Theta");
    auto* output = ctx.Output<Tensor>("Output");
    const T* theta_data = theta->data<T>();

    int n = theta->dims()[0];
    auto size_attr = ctx.Attr<std::vector<int>>("output_shape");
    Tensor h_sizes;
    int* h_size_data;
    if (size_attr.size() == 0) {
      auto* output_shape = ctx.Input<Tensor>("OutputShape");
      framework::TensorCopy(*output_shape, platform::CPUPlace(), &h_sizes);
      h_size_data = h_sizes.data<int>();
    } else {
      h_size_data = h_sizes.mutable_data<int>({4}, platform::CPUPlace());
      h_size_data[0] = n;
      h_size_data[1] = size_attr[1];
      h_size_data[2] = size_attr[2];
      h_size_data[3] = size_attr[3];
    }

    T* output_data = output->mutable_data<T>(
        {n, h_size_data[2], h_size_data[3], 2}, ctx.GetPlace());
    ScopedSpatialTransformerDescriptor st_desc;
    cudnnSpatialTransformerDescriptor_t cudnn_st_desc =
        st_desc.descriptor<T>(4, h_size_data);

63 64 65
    PADDLE_ENFORCE_EQ(
        platform::dynload::cudnnSpatialTfGridGeneratorForward(
            handle, cudnn_st_desc, theta_data, output_data),
66
        true, platform::errors::Fatal("Some errors has occurred "
67
                                      "during forward computation in cudnn."));
W
whs 已提交
68 69 70 71 72 73 74
  }
};

template <typename T>
class CUDNNAffineGridGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
75
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
76 77 78 79 80
                      platform::errors::InvalidArgument(
                          "Only "
                          "support for CUDAPlace. Please switch "
                          "your context from CPUPlace to "
                          "CUDAPlace or update your cudnn."));
W
whs 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();
    auto output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
    auto theta_grad = ctx.Output<Tensor>(framework::GradVarName("Theta"));

    int n = output_grad->dims()[0];
    auto size_attr = ctx.Attr<std::vector<int>>("output_shape");
    Tensor h_sizes;
    int* h_size_data;
    if (size_attr.size() == 0) {
      auto* output_shape = ctx.Input<Tensor>("OutputShape");
      framework::TensorCopy(*output_shape, platform::CPUPlace(), &h_sizes);
      h_size_data = h_sizes.data<int>();
    } else {
      h_size_data = h_sizes.mutable_data<int>({4}, platform::CPUPlace());
      h_size_data[0] = n;
      h_size_data[1] = size_attr[1];
      h_size_data[2] = size_attr[2];
      h_size_data[3] = size_attr[3];
    }

    ScopedSpatialTransformerDescriptor st_desc;
    cudnnSpatialTransformerDescriptor_t cudnn_st_desc =
        st_desc.descriptor<T>(4, h_size_data);

    const T* output_grad_data = output_grad->data<T>();
    T* theta_grad_data = theta_grad->mutable_data<T>(ctx.GetPlace());

109 110 111 112 113
    PADDLE_ENFORCE_EQ(
        platform::dynload::cudnnSpatialTfGridGeneratorBackward(
            handle, cudnn_st_desc, output_grad_data, theta_grad_data),
        true,
        "Some errors "
114
        "has occurred during forward computation in cudnn;");
W
whs 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127
  }
};

}  // namespace operators
}  // namespace paddle

namespace plat = paddle::platform;
REGISTER_OP_KERNEL(affine_grid, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNAffineGridOpKernel<float>,
                   paddle::operators::CUDNNAffineGridOpKernel<double>);
REGISTER_OP_KERNEL(affine_grid_grad, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNAffineGridGradOpKernel<float>,
                   paddle::operators::CUDNNAffineGridGradOpKernel<double>);