math_function.cc 15.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15 16 17
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/operators/math/math_function_impl.h"
18
#include "paddle/fluid/platform/float16.h"
Q
qijun 已提交
19 20 21 22 23

namespace paddle {
namespace operators {
namespace math {

24 25 26 27 28 29 30 31 32 33 34
using float16 = paddle::platform::float16;

template <>
void gemm<platform::CPUDeviceContext, float16>(
    const platform::CPUDeviceContext& context, const CBLAS_TRANSPOSE transA,
    const CBLAS_TRANSPOSE transB, const int M, const int N, const int K,
    const float16 alpha, const float16* A, const float16* B, const float16 beta,
    float16* C) {
  PADDLE_THROW("float16 GEMM not supported on CPU");
}

Q
qijun 已提交
35
template <>
Q
QI JUN 已提交
36 37 38 39 40
void gemm<platform::CPUDeviceContext, float>(
    const platform::CPUDeviceContext& context, const CBLAS_TRANSPOSE transA,
    const CBLAS_TRANSPOSE transB, const int M, const int N, const int K,
    const float alpha, const float* A, const float* B, const float beta,
    float* C) {
D
dongzhihong 已提交
41 42
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
Q
qijun 已提交
43
  int ldc = N;
Q
qijun 已提交
44 45
  cblas_sgemm(CblasRowMajor, transA, transB, M, N, K, alpha, A, lda, B, ldb,
              beta, C, ldc);
Q
qijun 已提交
46 47 48
}

template <>
Q
QI JUN 已提交
49 50 51 52 53
void gemm<platform::CPUDeviceContext, double>(
    const platform::CPUDeviceContext& context, const CBLAS_TRANSPOSE transA,
    const CBLAS_TRANSPOSE transB, const int M, const int N, const int K,
    const double alpha, const double* A, const double* B, const double beta,
    double* C) {
D
dongzhihong 已提交
54 55
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
Q
qijun 已提交
56
  int ldc = N;
Q
qijun 已提交
57 58
  cblas_dgemm(CblasRowMajor, transA, transB, M, N, K, alpha, A, lda, B, ldb,
              beta, C, ldc);
Q
qijun 已提交
59 60
}

61 62 63 64 65 66 67 68 69
template <>
void gemm<platform::CPUDeviceContext, float16>(
    const platform::CPUDeviceContext& context, const bool transA,
    const bool transB, const int M, const int N, const int K,
    const float16 alpha, const float16* A, const int lda, const float16* B,
    const int ldb, const float16 beta, float16* C, const int ldc) {
  PADDLE_THROW("float16 GEMM not supported on CPU");
}

G
guosheng 已提交
70
template <>
Q
QI JUN 已提交
71 72 73 74 75
void gemm<platform::CPUDeviceContext, float>(
    const platform::CPUDeviceContext& context, const bool transA,
    const bool transB, const int M, const int N, const int K, const float alpha,
    const float* A, const int lda, const float* B, const int ldb,
    const float beta, float* C, const int ldc) {
G
guosheng 已提交
76 77 78 79 80 81
  cblas_sgemm(CblasRowMajor, transA == false ? CblasNoTrans : CblasTrans,
              transB == false ? CblasNoTrans : CblasTrans, M, N, K, alpha, A,
              lda, B, ldb, beta, C, ldc);
}

template <>
Q
QI JUN 已提交
82 83 84 85 86
void gemm<platform::CPUDeviceContext, double>(
    const platform::CPUDeviceContext& context, const bool transA,
    const bool transB, const int M, const int N, const int K,
    const double alpha, const double* A, const int lda, const double* B,
    const int ldb, const double beta, double* C, const int ldc) {
G
guosheng 已提交
87 88 89 90 91
  cblas_dgemm(CblasRowMajor, transA == false ? CblasNoTrans : CblasTrans,
              transB == false ? CblasNoTrans : CblasTrans, M, N, K, alpha, A,
              lda, B, ldb, beta, C, ldc);
}

92 93 94 95 96 97 98 99 100
template <>
void matmul<platform::CPUDeviceContext, float16>(
    const platform::CPUDeviceContext& context,
    const framework::Tensor& matrix_a, bool trans_a,
    const framework::Tensor& matrix_b, bool trans_b, float16 alpha,
    framework::Tensor* matrix_out, float16 beta) {
  PADDLE_THROW("float16 matmul not supported on CPU");
}

Q
qijun 已提交
101
template <>
Q
QI JUN 已提交
102 103 104 105
void matmul<platform::CPUDeviceContext, float>(
    const platform::CPUDeviceContext& context,
    const framework::Tensor& matrix_a, bool trans_a,
    const framework::Tensor& matrix_b, bool trans_b, float alpha,
106
    framework::Tensor* matrix_out, float beta) {
Q
qijun 已提交
107 108 109 110 111 112 113 114 115
  auto dim_a = matrix_a.dims();
  auto dim_b = matrix_b.dims();
  auto dim_out = matrix_out->dims();
  PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2,
                 "The input and output of matmul be matrix");

  PADDLE_ENFORCE(platform::is_cpu_place(matrix_a.place()) &&
                     platform::is_cpu_place(matrix_b.place()) &&
                     platform::is_cpu_place(matrix_out->place()),
Q
qijun 已提交
116 117
                 "Matrix must all be in CPUPlace");

Q
qijun 已提交
118 119 120
  int M = dim_out[0];
  int N = dim_out[1];
  int K = (trans_a == false) ? dim_a[1] : dim_a[0];
Q
qijun 已提交
121

Q
qijun 已提交
122 123
  CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans;
Q
qijun 已提交
124

Q
QI JUN 已提交
125
  gemm<platform::CPUDeviceContext, float>(
126 127
      context, transA, transB, M, N, K, alpha, matrix_a.data<float>(),
      matrix_b.data<float>(), beta, matrix_out->data<float>());
Q
qijun 已提交
128 129 130
}

template <>
Q
QI JUN 已提交
131 132 133 134
void matmul<platform::CPUDeviceContext, double>(
    const platform::CPUDeviceContext& context,
    const framework::Tensor& matrix_a, bool trans_a,
    const framework::Tensor& matrix_b, bool trans_b, double alpha,
135
    framework::Tensor* matrix_out, double beta) {
Q
qijun 已提交
136 137 138 139 140 141 142 143 144
  auto dim_a = matrix_a.dims();
  auto dim_b = matrix_b.dims();
  auto dim_out = matrix_out->dims();
  PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2,
                 "The input and output of matmul be matrix");

  PADDLE_ENFORCE(platform::is_cpu_place(matrix_a.place()) &&
                     platform::is_cpu_place(matrix_b.place()) &&
                     platform::is_cpu_place(matrix_out->place()),
Q
qijun 已提交
145 146
                 "Matrix must all be in CPUPlace");

Q
qijun 已提交
147 148 149 150 151 152
  int M = dim_out[0];
  int N = dim_out[1];
  int K = (trans_a == false) ? dim_a[1] : dim_a[0];

  CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans;
Q
qijun 已提交
153

Q
QI JUN 已提交
154
  gemm<platform::CPUDeviceContext, double>(
155 156
      context, transA, transB, M, N, K, alpha, matrix_a.data<double>(),
      matrix_b.data<double>(), beta, matrix_out->data<double>());
Q
qijun 已提交
157 158
}

159 160 161 162 163 164 165 166 167
template <>
void batched_gemm<platform::CPUDeviceContext, float16>(
    const platform::CPUDeviceContext& context, const CBLAS_TRANSPOSE transA,
    const CBLAS_TRANSPOSE transB, const int M, const int N, const int K,
    const float16 alpha, const float16* A, const float16* B, const float16 beta,
    float16* C, const int batchCount, const int strideA, const int strideB) {
  PADDLE_THROW("float16 batched_gemm not supported on CPU");
}

T
tensor-tang 已提交
168
#ifdef PADDLE_WITH_MKLML
M
Markus Kliegl 已提交
169 170
// Use cblas_{s,d}gemm_batched if available: Run with 1 group of size batchSize.
template <>
Q
QI JUN 已提交
171 172
void batched_gemm<platform::CPUDeviceContext, float>(
    const platform::CPUDeviceContext& context, const CBLAS_TRANSPOSE transA,
M
Markus Kliegl 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
    const CBLAS_TRANSPOSE transB, const int M, const int N, const int K,
    const float alpha, const float* A, const float* B, const float beta,
    float* C, const int batchCount, const int strideA, const int strideB) {
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
  auto a_array = std::vector<const float*>(batchCount);
  auto b_array = std::vector<const float*>(batchCount);
  auto c_array = std::vector<float*>(batchCount);
  for (int k = 0; k < batchCount; ++k) {
    a_array[k] = &A[k * strideA];
    b_array[k] = &B[k * strideB];
    c_array[k] = &C[k * M * N];
  }
  cblas_sgemm_batch(CblasRowMajor, &transA, &transB, &M, &N, &K, &alpha,
                    a_array.data(), &lda, b_array.data(), &ldb, &beta,
                    c_array.data(), &ldc, 1 /* group_count */, &batchCount);
}

template <>
Q
QI JUN 已提交
193 194
void batched_gemm<platform::CPUDeviceContext, double>(
    const platform::CPUDeviceContext& context, const CBLAS_TRANSPOSE transA,
M
Markus Kliegl 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
    const CBLAS_TRANSPOSE transB, const int M, const int N, const int K,
    const double alpha, const double* A, const double* B, const double beta,
    double* C, const int batchCount, const int strideA, const int strideB) {
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
  auto a_array = std::vector<const double*>(batchCount);
  auto b_array = std::vector<const double*>(batchCount);
  auto c_array = std::vector<double*>(batchCount);
  for (int k = 0; k < batchCount; ++k) {
    a_array[k] = &A[k * strideA];
    b_array[k] = &B[k * strideB];
    c_array[k] = &C[k * M * N];
  }
  cblas_dgemm_batch(CblasRowMajor, &transA, &transB, &M, &N, &K, &alpha,
                    a_array.data(), &lda, b_array.data(), &ldb, &beta,
                    c_array.data(), &ldc, 1 /* group_count */, &batchCount);
}
#else
// The below is a naive but correct serial implementation that just loops
// over the batch dimension. This is a fallback for when the batched gemm
// functions of Intel MKL are not available. In the future, this computation
// should be parallelized.
template <>
Q
QI JUN 已提交
219 220
void batched_gemm<platform::CPUDeviceContext, float>(
    const platform::CPUDeviceContext& context, const CBLAS_TRANSPOSE transA,
M
Markus Kliegl 已提交
221 222 223 224 225 226 227
    const CBLAS_TRANSPOSE transB, const int M, const int N, const int K,
    const float alpha, const float* A, const float* B, const float beta,
    float* C, const int batchCount, const int strideA, const int strideB) {
  for (int k = 0; k < batchCount; ++k) {
    const float* Ak = &A[k * strideA];
    const float* Bk = &B[k * strideB];
    float* Ck = &C[k * M * N];
Q
QI JUN 已提交
228 229
    gemm<platform::CPUDeviceContext, float>(context, transA, transB, M, N, K,
                                            alpha, Ak, Bk, beta, Ck);
M
Markus Kliegl 已提交
230 231 232 233
  }
}

template <>
Q
QI JUN 已提交
234 235
void batched_gemm<platform::CPUDeviceContext, double>(
    const platform::CPUDeviceContext& context, const CBLAS_TRANSPOSE transA,
M
Markus Kliegl 已提交
236 237 238 239 240 241 242
    const CBLAS_TRANSPOSE transB, const int M, const int N, const int K,
    const double alpha, const double* A, const double* B, const double beta,
    double* C, const int batchCount, const int strideA, const int strideB) {
  for (int k = 0; k < batchCount; ++k) {
    const double* Ak = &A[k * strideA];
    const double* Bk = &B[k * strideB];
    double* Ck = &C[k * M * N];
Q
QI JUN 已提交
243 244
    gemm<platform::CPUDeviceContext, double>(context, transA, transB, M, N, K,
                                             alpha, Ak, Bk, beta, Ck);
M
Markus Kliegl 已提交
245 246 247 248
  }
}
#endif

249
template <>
Q
QI JUN 已提交
250 251 252 253
void gemv<platform::CPUDeviceContext, float>(
    const platform::CPUDeviceContext& context, const bool trans_a, const int M,
    const int N, const float alpha, const float* A, const float* B,
    const float beta, float* C) {
254 255 256 257 258
  CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans;
  cblas_sgemv(CblasRowMajor, transA, M, N, alpha, A, N, B, 1, beta, C, 1);
}

template <>
Q
QI JUN 已提交
259 260 261 262
void gemv<platform::CPUDeviceContext, double>(
    const platform::CPUDeviceContext& context, const bool trans_a, const int M,
    const int N, const double alpha, const double* A, const double* B,
    const double beta, double* C) {
263 264 265 266
  CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans;
  cblas_dgemv(CblasRowMajor, transA, M, N, alpha, A, N, B, 1, beta, C, 1);
}

267
template <>
Q
QI JUN 已提交
268 269 270
void axpy<platform::CPUDeviceContext, float>(
    const platform::CPUDeviceContext& context, const int n, const float alpha,
    const float* x, float* y) {
271 272 273 274
  cblas_saxpy(n, alpha, x, 1, y, 1);
}

template <>
Q
QI JUN 已提交
275 276 277
void axpy<platform::CPUDeviceContext, double>(
    const platform::CPUDeviceContext& context, const int n, const double alpha,
    const double* x, double* y) {
278 279 280
  cblas_daxpy(n, alpha, x, 1, y, 1);
}

Q
QI JUN 已提交
281 282 283 284 285
template struct SetConstant<platform::CPUDeviceContext, float>;
template struct SetConstant<platform::CPUDeviceContext, double>;
template struct SetConstant<platform::CPUDeviceContext, int>;
template struct SetConstant<platform::CPUDeviceContext, int64_t>;
template struct SetConstant<platform::CPUDeviceContext, bool>;
286

287 288 289 290 291 292 293
#define DEFINE_CPU_TRANS(RANK)                                             \
  template struct Transpose<platform::CPUDeviceContext, platform::float16, \
                            RANK>;                                         \
  template struct Transpose<platform::CPUDeviceContext, float, RANK>;      \
  template struct Transpose<platform::CPUDeviceContext, double, RANK>;     \
  template struct Transpose<platform::CPUDeviceContext, int, RANK>;        \
  template struct Transpose<platform::CPUDeviceContext, int64_t, RANK>;    \
D
dzhwinter 已提交
294
  template struct Transpose<platform::CPUDeviceContext, bool, RANK>;
295 296 297 298 299 300 301

DEFINE_CPU_TRANS(1);
DEFINE_CPU_TRANS(2);
DEFINE_CPU_TRANS(3);
DEFINE_CPU_TRANS(4);
DEFINE_CPU_TRANS(5);
DEFINE_CPU_TRANS(6);
Q
qijun 已提交
302

303 304
struct TensorSetConstantCPU {
  TensorSetConstantCPU(framework::Tensor* tensor, float value)
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
      : tensor_(tensor), value_(value) {}
  template <typename T>
  void operator()() const {
    auto cpu = platform::CPUPlace();
    auto* begin = tensor_->mutable_data<T>(cpu);
    std::fill(begin, begin + tensor_->numel(), static_cast<T>(value_));
  }
  framework::Tensor* tensor_;
  float value_;
};

template <>
void set_constant_with_place<platform::CPUPlace>(
    const platform::DeviceContext& context, framework::Tensor* tensor,
    float value) {
  framework::VisitDataType(framework::ToDataType(tensor->type()),
321
                           TensorSetConstantCPU(tensor, value));
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
}

struct TensorSetConstantWithPlace : public boost::static_visitor<void> {
  TensorSetConstantWithPlace(const platform::DeviceContext& context,
                             framework::Tensor* tensor, float value)
      : context_(context), tensor_(tensor), value_(value) {}

  template <typename Place>
  void operator()(Place place) const {
    set_constant_with_place<Place>(context_, tensor_, value_);
  }

  const platform::DeviceContext& context_;
  framework::Tensor* tensor_;
  float value_;
};

void set_constant(const platform::DeviceContext& context,
                  framework::Tensor* tensor, float value) {
Y
Fix CI  
Yu Yang 已提交
341
  TensorSetConstantWithPlace func(context, tensor, value);
342
#ifdef PADDLE_WITH_CUDA
Y
Fix CI  
Yu Yang 已提交
343
  tensor->place().apply_visitor(func);
344 345 346 347 348
#else
  func(platform::CPUPlace());
#endif
}

Q
qingqing01 已提交
349 350 351 352 353 354 355 356 357 358
template <typename T>
struct RowwiseAdd<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
                  const framework::Tensor& input,
                  const framework::Tensor& vector, framework::Tensor* output) {
    auto in_dims = input.dims();
    auto size = input.numel() / in_dims[0];
    PADDLE_ENFORCE_EQ(vector.numel(), size);
    PADDLE_ENFORCE_EQ(output->dims(), in_dims);

Q
qingqing01 已提交
359 360 361 362 363 364
    auto in = framework::EigenMatrix<T>::From(input);
    auto vec = framework::EigenVector<T>::Flatten(vector);
    auto out = framework::EigenMatrix<T>::From(*output);

    for (int64_t i = 0; i < in_dims[0]; ++i) {
      out.chip(i, 0) = in.chip(i, 0) + vec;
Q
qingqing01 已提交
365 366 367 368
    }
  }
};

Q
QI JUN 已提交
369 370
template struct RowwiseAdd<platform::CPUDeviceContext, float>;
template struct RowwiseAdd<platform::CPUDeviceContext, double>;
Q
qingqing01 已提交
371

Q
QI JUN 已提交
372 373
template struct ColwiseSum<platform::CPUDeviceContext, float>;
template struct ColwiseSum<platform::CPUDeviceContext, double>;
374

C
chengduoZH 已提交
375 376 377 378 379 380
template struct RowwiseSum<platform::CPUDeviceContext, float>;
template struct RowwiseSum<platform::CPUDeviceContext, double>;

template struct RowwiseMean<platform::CPUDeviceContext, float>;
template struct RowwiseMean<platform::CPUDeviceContext, double>;

Q
qijun 已提交
381 382 383
}  // namespace math
}  // namespace operators
}  // namespace paddle