warpctc_op.h 18.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yiqun Liu 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include <vector>
18
#include "paddle/fluid/framework/eigen.h"
Y
Yi Wang 已提交
19 20 21 22 23
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/sequence_padding.h"
#include "paddle/fluid/operators/math/sequence_scale.h"
#include "paddle/fluid/platform/dynload/warpctc.h"
Y
Yiqun Liu 已提交
24 25 26 27 28 29 30

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
template <typename DeviceContext, typename T>
class ComputeCtcLossFunctor {
 public:
  ctcStatus_t operator()(const T* const activations, T* gradients,
                         const int* const flat_labels,
                         const int* const label_lengths,
                         const int* const input_lengths, int alphabet_size,
                         int minibatch, T* costs, void* workspace,
                         ctcOptions options) {
    return CTC_STATUS_EXECUTION_FAILED;
  }
};

template <typename DeviceContext>
class ComputeCtcLossFunctor<DeviceContext, float> {
 public:
  ctcStatus_t operator()(const float* const activations, float* gradients,
                         const int* const flat_labels,
                         const int* const label_lengths,
                         const int* const input_lengths, int alphabet_size,
                         int minibatch, float* costs, void* workspace,
                         ctcOptions options) {
    return platform::dynload::compute_ctc_loss(
        activations, gradients, flat_labels, label_lengths, input_lengths,
        static_cast<int>(alphabet_size), static_cast<int>(minibatch), costs,
        workspace, options);
  }
};

Y
Yiqun Liu 已提交
60
template <typename DeviceContext>
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
class ComputeCtcLossFunctor<DeviceContext, double> {
 public:
  ctcStatus_t operator()(const double* const activations, double* gradients,
                         const int* const flat_labels,
                         const int* const label_lengths,
                         const int* const input_lengths, int alphabet_size,
                         int minibatch, double* costs, void* workspace,
                         ctcOptions options) {
    return platform::dynload::compute_ctc_loss_double(
        activations, gradients, flat_labels, label_lengths, input_lengths,
        static_cast<int>(alphabet_size), static_cast<int>(minibatch), costs,
        workspace, options);
  }
};

template <typename DeviceContext, typename T>
Y
Yiqun Liu 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
class WarpCTCFunctor {
 public:
  /*
   * \brief Compute the connectionist temporal classification loss,
   *        and optionally compute the gradient with respect to the inputs.
   *
   * If gradient is nullptr, it only computes the ctc loss,
   * or computes both ctc loss and gradient.
   *
   * \param ctx               execution context of this functor
   * \param input             batch matrix of input probabilities, in
   *                          max_sequence_length x num_sequences x
   *                          sequence_width, (row-major) format
   * \param gradient          batch matrix of gradient, with the same shape as
   *                          input.
   * \param cpu_labels        labels always in CPU memory.
   * \param cpu_label_lengths length of all labels in CPU memory.
   * \param cpu_input_lengths length of all sequences in CPU memory.
   * \param sequence_width    number of possible output symbols.
   * \param num_sequences     number of sequence.
   * \param blank             blank label used in ctc loss function.
   * \param cpu_losss         cost of each sequence in CPU memory.
   */
100 101
  void operator()(const framework::ExecutionContext& ctx, const T* input,
                  T* gradient, const int* cpu_labels,
Y
Yiqun Liu 已提交
102 103
                  const int* cpu_label_lengths, const int* cpu_input_lengths,
                  const size_t sequence_width, const size_t num_sequences,
104
                  const size_t blank, T* cpu_loss) {
Y
Yiqun Liu 已提交
105 106 107 108 109 110
    // Init warp-ctc options
    init(ctx, blank);

    // Compute the required workspace size.
    // There is no memory allocated operations within warp-ctc.
    size_t workspace_bytes = 0;
111 112 113 114 115 116 117 118 119 120 121 122
    ctcStatus_t status = CTC_STATUS_UNKNOWN_ERROR;
    if (sizeof(T) == 4) {
      status = platform::dynload::get_workspace_size(
          cpu_label_lengths, cpu_input_lengths,
          static_cast<int>(sequence_width), static_cast<int>(num_sequences),
          options_, &workspace_bytes);
    } else {
      status = platform::dynload::get_workspace_size_double(
          cpu_label_lengths, cpu_input_lengths,
          static_cast<int>(sequence_width), static_cast<int>(num_sequences),
          options_, &workspace_bytes);
    }
123 124 125 126 127 128 129 130 131 132 133
    PADDLE_ENFORCE_EQ(
        CTC_STATUS_SUCCESS, status,
        platform::errors::PreconditionNotMet(
            "warp-ctc [version %d] Error in get_workspace_size: %s",
            warpctc_version_, platform::dynload::ctcGetStatusString(status)));
    PADDLE_ENFORCE_GT(
        workspace_bytes, 0UL,
        platform::errors::InvalidArgument(
            "Bytes of workspace got by warp-ctc function, "
            "get_workspace_size() should be larger than 0, but received %d",
            workspace_bytes));
Y
Yiqun Liu 已提交
134

L
Li Fuchen 已提交
135
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
136 137
    size_t workspace_elements = workspace_bytes / sizeof(T) + 1UL;
    Tensor workspace = ctx.AllocateTmpTensor<T, DeviceContext>(
Y
Yiqun Liu 已提交
138
        framework::make_ddim({static_cast<int64_t>(workspace_elements)}),
L
Li Fuchen 已提交
139
        dev_ctx);
140 141
    T* workspace_data = workspace.data<T>();
    math::SetConstant<DeviceContext, T>()(
Y
Yiqun Liu 已提交
142
        ctx.template device_context<DeviceContext>(), &workspace,
143
        static_cast<T>(0));
Y
Yiqun Liu 已提交
144 145

    // compute loss and gradient
146
    status = ComputeCtcLossFunctor<DeviceContext, T>()(
Y
Yiqun Liu 已提交
147 148 149
        input, gradient, cpu_labels, cpu_label_lengths, cpu_input_lengths,
        static_cast<int>(sequence_width), static_cast<int>(num_sequences),
        cpu_loss, workspace_data, options_);
150 151 152 153

    PADDLE_ENFORCE_EQ(
        CTC_STATUS_SUCCESS, status,
        platform::errors::PreconditionNotMet(
154
            "warp-ctc [version %d] Error in get_workspace_size: %s",
155
            warpctc_version_, platform::dynload::ctcGetStatusString(status)));
Y
Yiqun Liu 已提交
156 157 158 159 160 161 162
  }

 protected:
  void init(const framework::ExecutionContext& ctx, const size_t blank) {
    warpctc_version_ = platform::dynload::get_warpctc_version();

    if (platform::is_gpu_place(ctx.GetPlace())) {
163
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
Yiqun Liu 已提交
164 165 166 167 168
      options_.loc = CTC_GPU;
      options_.stream = reinterpret_cast<const platform::CUDADeviceContext&>(
                            ctx.device_context())
                            .stream();
#else
169 170
      PADDLE_THROW(platform::errors::PreconditionNotMet(
          "[warpctc init] GPU is not enabled."));
Y
Yiqun Liu 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
#endif
    } else {
      options_.loc = CTC_CPU;
      options_.num_threads = 1;
    }

    options_.blank_label = blank;
  }

 private:
  int warpctc_version_;
  ctcOptions options_;
};

template <typename DeviceContext, typename T>
class WarpCTCKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* logits = ctx.Input<LoDTensor>("Logits");
    auto* label = ctx.Input<LoDTensor>("Label");
    auto* warpctc_grad = ctx.Output<Tensor>("WarpCTCGrad");
    auto* loss = ctx.Output<Tensor>("Loss");

194 195 196 197 198 199 200 201 202
    size_t num_sequences, sequence_width, max_sequence_length;
    framework::Vector<size_t> logits_lod;
    framework::Vector<size_t> label_lod;

    if (ctx.HasInput("LogitsLength") && ctx.HasInput("LabelLength")) {
      num_sequences = logits->dims()[1];
      sequence_width = logits->dims()[2];
      max_sequence_length = logits->dims()[0];

H
Hui Zhang 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
      PADDLE_ENFORCE_GT(max_sequence_length, 0,
                        platform::errors::InvalidArgument(
                            "The first dimension of Input(Logits) should be "
                            "greater than zero "
                            "but received %d. ",
                            max_sequence_length));

      PADDLE_ENFORCE_GT(num_sequences, 0,
                        platform::errors::InvalidArgument(
                            "The second dimension of Input(Logits) should be "
                            "greater than zero "
                            "but received %d. ",
                            num_sequences));

      PADDLE_ENFORCE_GT(sequence_width, 0,
                        platform::errors::InvalidArgument(
                            "The third dimension of Input(Logits) should be "
                            "greater than zero "
                            "but received %d. ",
                            sequence_width));

224 225 226 227 228 229 230 231 232 233 234
      auto* logits_length = ctx.Input<framework::Tensor>("LogitsLength");
      auto* labels_length = ctx.Input<framework::Tensor>("LabelLength");
      framework::Tensor logits_length_cpu;
      framework::Tensor labels_length_cpu;
      framework::TensorCopy(*logits_length, platform::CPUPlace(),
                            &logits_length_cpu);
      framework::TensorCopy(*labels_length, platform::CPUPlace(),
                            &labels_length_cpu);

      logits_lod.push_back(0);
      label_lod.push_back(0);
235
      for (size_t i = 0; i < num_sequences; i++) {
236 237 238 239 240 241
        logits_lod.push_back(logits_lod[i] +
                             logits_length_cpu.data<int64_t>()[i]);
        label_lod.push_back(label_lod[i] +
                            labels_length_cpu.data<int64_t>()[i]);
      }
    } else {
242 243 244 245 246 247 248 249 250
      PADDLE_ENFORCE_GT(logits->NumLevels(), 0UL,
                        platform::errors::InvalidArgument(
                            "Input(Logits) Tensor of WarpCTC "
                            "does not contain LoD information."));
      PADDLE_ENFORCE_GT(label->NumLevels(), 0UL,
                        platform::errors::InvalidArgument(
                            "Input(Label) Tensor of WarpCTC "
                            "does not contain LoD information."));

251 252
      logits_lod = framework::ToAbsOffset(logits->lod())[0];
      auto logits_dims = logits->dims();
253

H
Hui Zhang 已提交
254 255 256 257 258 259 260
      PADDLE_ENFORCE_GT(logits_dims[0], 0,
                        platform::errors::InvalidArgument(
                            "The first dimension of Input(Logits) should be "
                            "greater than zero "
                            "but received %d. ",
                            logits_dims[0]));

261 262
      PADDLE_ENFORCE_EQ(
          logits_dims[0], static_cast<int64_t>(logits_lod.back()),
263 264 265 266
          platform::errors::InvalidArgument(
              "The first dimension of Input(Logits) should be equal to "
              "the sum of all sequences' lengths = %d., but received %d. ",
              static_cast<int64_t>(logits_lod.back()), logits_dims[0]));
267 268 269

      label_lod = framework::ToAbsOffset(label->lod())[0];
      auto label_dims = label->dims();
270 271 272 273 274
      PADDLE_ENFORCE_EQ(label_dims[1], 1,
                        platform::errors::InvalidArgument(
                            "The last dimension of Input(Label) should be 1, "
                            "but received %d",
                            label_dims[1]));
275 276

      num_sequences = logits_lod.size() - 1;
277 278 279 280 281 282
      PADDLE_ENFORCE_EQ(
          num_sequences, label_lod.size() - 1,
          platform::errors::InvalidArgument(
              "The number of sequences of Input(Logits) should be "
              "equal to that of Input(Label) = %d, but received %d",
              label_lod.size() - 1, num_sequences));
283 284 285 286 287

      sequence_width = logits->numel() / logits_dims[0];
      max_sequence_length = math::MaximumSequenceLength(logits_lod);
    }

Y
Yiqun Liu 已提交
288 289 290 291
    auto loss_dims =
        framework::make_ddim({static_cast<int64_t>(num_sequences), 1});

    // warpctc needs sequences data stored in transposed padding format
F
fengjiayi 已提交
292
    LoDTensor warpctc_logits;
Y
Yiqun Liu 已提交
293 294 295 296
    auto warpctc_logits_dims =
        framework::make_ddim({static_cast<int64_t>(max_sequence_length),
                              static_cast<int64_t>(num_sequences),
                              static_cast<int64_t>(sequence_width)});
L
Li Fuchen 已提交
297 298 299 300
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    Tensor warpctc_logits_tmp =
        ctx.AllocateTmpTensor<T, DeviceContext>(warpctc_logits_dims, dev_ctx);
    warpctc_logits.ShareDataWith(warpctc_logits_tmp);
301 302
    if (ctx.HasInput("LogitsLength")) {
      TensorCopySync(*logits, ctx.GetPlace(), &warpctc_logits);
F
fengjiayi 已提交
303
    } else {
304 305 306 307 308 309 310 311 312 313 314 315 316
      LoDTensor cpu_pad_value;
      T* pad_value_data =
          cpu_pad_value.mutable_data<T>({1}, platform::CPUPlace());
      *pad_value_data = static_cast<T>(0);
      LoDTensor pad_value;
      if (platform::is_cpu_place(ctx.GetPlace())) {
        pad_value = cpu_pad_value;
      } else {
        TensorCopySync(cpu_pad_value, ctx.GetPlace(), &pad_value);
      }

      math::PaddingLoDTensorFunctor<DeviceContext, T>()(
          ctx.template device_context<DeviceContext>(), *logits,
317 318
          &warpctc_logits, pad_value, -1, 0, false /* norm_by_times */,
          math::kLengthBatchWidth);
F
fengjiayi 已提交
319
    }
Y
Yiqun Liu 已提交
320 321 322 323 324 325
    const T* warpctc_logits_data = warpctc_logits.data<T>();

    std::vector<int> warpctc_label_lengths(num_sequences);
    std::vector<int> warpctc_logits_lengths(num_sequences);

    for (size_t i = 0; i < num_sequences; ++i) {
326 327
      warpctc_label_lengths[i] = label_lod[i + 1] - label_lod[i];
      warpctc_logits_lengths[i] = logits_lod[i + 1] - logits_lod[i];
Y
Yiqun Liu 已提交
328 329 330 331 332 333 334
    }

    // warpctc computes loss and gradient in one call, gradient data also stored
    // in batch format
    T* warpctc_grad_data =
        warpctc_grad->mutable_data<T>(warpctc_logits.dims(), ctx.GetPlace());

335 336 337 338
    math::SetConstant<DeviceContext, T>()(
        ctx.template device_context<DeviceContext>(), warpctc_grad,
        static_cast<T>(0));

Y
Yiqun Liu 已提交
339
    // warpctc accesses labels in CPU memory
W
whs 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352
    LoDTensor warpctc_label;
    if (ctx.HasInput("LogitsLength")) {
      warpctc_label.mutable_data<int>(
          {static_cast<int64_t>(math::TotalSequenceLength(label_lod)), 1},
          platform::CPUPlace());
      std::vector<framework::Vector<size_t>> lod;
      lod.push_back(label_lod);
      warpctc_label.set_lod(lod);

      if (platform::is_cpu_place(ctx.GetPlace())) {
        math::UnpaddingLoDTensorFunctor<DeviceContext, int>()(
            ctx.template device_context<DeviceContext>(), *label,
            &warpctc_label, label->dims()[1] /*pad_seq_len*/, 0 /*lod_level*/,
353
            false /*norm_by_times*/, math::kBatchLengthWidth);
W
whs 已提交
354 355 356 357 358 359 360 361 362
      } else {
        LoDTensor gpu_label;
        gpu_label.mutable_data<int>(
            {static_cast<int64_t>(math::TotalSequenceLength(label_lod)), 1},
            ctx.GetPlace());
        gpu_label.set_lod(lod);
        math::UnpaddingLoDTensorFunctor<DeviceContext, int>()(
            ctx.template device_context<DeviceContext>(), *label, &gpu_label,
            label->dims()[1] /*pad_seq_len*/, 0 /*lod_level*/,
363
            false /*norm_by_times*/, math::kBatchLengthWidth);
W
whs 已提交
364 365 366 367 368
        TensorCopySync(gpu_label, platform::CPUPlace(), &warpctc_label);
      }
    } else {
      TensorCopySync(*label, platform::CPUPlace(), &warpctc_label);
    }
369

Y
Yiqun Liu 已提交
370 371 372 373 374 375 376 377
    const int* warpctc_label_data = warpctc_label.data<int>();
    // warpctc stores loss in CPU memory
    Tensor warpctc_loss;
    T* warpctc_loss_data =
        warpctc_loss.mutable_data<T>(loss_dims, platform::CPUPlace());

    const size_t blank = static_cast<size_t>(ctx.Attr<int>("blank"));

378
    WarpCTCFunctor<DeviceContext, T>()(
Y
Yiqun Liu 已提交
379 380 381 382 383
        ctx, warpctc_logits_data, warpctc_grad_data, warpctc_label_data,
        warpctc_label_lengths.data(), warpctc_logits_lengths.data(),
        sequence_width, num_sequences, blank, warpctc_loss_data);

    // Copy the loss back
Y
Yi Wang 已提交
384
    TensorCopy(warpctc_loss, ctx.GetPlace(), ctx.device_context(), loss);
Y
Yiqun Liu 已提交
385 386 387 388 389 390 391
  }
};

template <typename DeviceContext, typename T>
class WarpCTCGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
F
fengjiayi 已提交
392
    auto* warpctc_grad = ctx.Input<LoDTensor>("WarpCTCGrad");
Y
Yiqun Liu 已提交
393
    auto* logits_grad = ctx.Output<LoDTensor>(framework::GradVarName("Logits"));
394
    const Tensor* loss_grad = ctx.Input<Tensor>(framework::GradVarName("Loss"));
W
wanghaoshuang 已提交
395 396

    logits_grad->mutable_data<T>(ctx.GetPlace());
Y
Yiqun Liu 已提交
397
    bool norm_by_times = ctx.Attr<bool>("norm_by_times");
398 399

    if (ctx.HasInput("LogitsLength")) {
400 401 402
      int max_seq_length = warpctc_grad->dims()[0];  // Tmax
      int num_sequences = warpctc_grad->dims()[1];   // B
      int seq_width = warpctc_grad->dims()[2];       // D
403

404
      auto* logits_length = ctx.Input<framework::Tensor>("LogitsLength");
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
      // B
      auto logits_len_e =
          framework::EigenTensor<int64_t, 1>::From(*logits_length);
      // (B, 1)
      auto loss_grad_e = framework::EigenTensor<T, 2>::From(*loss_grad);
      // (T, B, D)
      auto warpctc_grad_e = framework::EigenTensor<T, 3>::From(*warpctc_grad);

      auto logits_grad_e = framework::EigenTensor<T, 3>::From(*logits_grad);

      Eigen::DSizes<int, 3> grad_shape(1, num_sequences, 1);
      Eigen::DSizes<int, 3> bcast(max_seq_length, 1, seq_width);
      auto logits_g = warpctc_grad_e *
                      loss_grad_e.reshape(grad_shape).broadcast(bcast).eval();

      auto* place = ctx.template device_context<DeviceContext>().eigen_device();
421
      if (norm_by_times) {
422 423 424 425 426 427 428 429
        auto scales = logits_len_e.cast<T>()
                          .inverse()
                          .reshape(grad_shape)
                          .broadcast(bcast)
                          .eval();
        logits_grad_e.device(*place) = logits_g * scales;
      } else {
        logits_grad_e.device(*place) = logits_g;
430 431 432 433
      }
    } else {
      math::UnpaddingLoDTensorFunctor<DeviceContext, T>()(
          ctx.template device_context<DeviceContext>(), *warpctc_grad,
434
          logits_grad, -1, 0, norm_by_times, math::kLengthBatchWidth);
435 436 437 438 439 440

      const T* loss_grad_data = loss_grad->data<T>();
      math::ScaleLoDTensorFunctor<DeviceContext, T>()(
          ctx.template device_context<DeviceContext>(), loss_grad_data,
          logits_grad);
    }
Y
Yiqun Liu 已提交
441 442 443 444 445
  }
};

}  // namespace operators
}  // namespace paddle